Advertisements
Advertisements
Question
If `A = [(2, 5),(1, 3)]`, `B = [(4, -2),(-1, 3)]` and I is Identity matrix of same order and `A^t` is the transpose of matrix A find `A^t.B + BI`
Solution
`A = [(2, 5),(1, 3)]`
`∴ A^t = [(2, 1),(5, 3)]`
`A^t.B = [(2, 1),(5, 3)][(4, -2),(-1, 3)]`
`= [(2 xx 4 + 1 xx (-1),2 xx (-2) + 1 xx 3),(5 xx 4 + 3 xx(-1), 5 xx (-2)+ 3 xx 3)]`
`= [(8-1,-4+3),(20-3,-10+9)]`
`= [(7, -1),(17, -1)]`
`B.I = [(4, -2),(-1, 3)][(1, 0),(0, 1)]`
`= [(4, -2),(-1, 3)]`
`∴ A^t.B + BI = [(7, -1),(17, -1)] + [(4, -2),(-1, 3)]`
`= [(11, -3),(16, 2)]`
APPEARS IN
RELATED QUESTIONS
Given A = `[(2, 0),(-1, 7)]` and I = `[(1, 0),(0, 1)]` and A2 = 9A + ml. Find m.
Evaluate:
`3[(5, -2)]`
If A = `[(4, 2),(1,1)]`, find (A – 2I)(A – 3I).
If A = `[(2, 1, -1),(0, 1, -2)]`, Find At . A where At is the transpose of matrix A.
Let `A = [(1, 0),(2, 1)], B = [(2, 3),(-1, 0)]`. Find `A^2 + AB + B^2`
If A = `[(3, x),(0, 1)]` and B = `[(9, 16),(0, -y)]`, find x and y when A2 = B.
Given A = `[(2,0), (-1,7)] and 1 = [(1,0), (0,1)]` and A2 = 9A +mI. Find m
Find the values of x, y, a and b, if `[(3x + 4y, 2, x - 2y),(a + b, 2a - b, -1)] = [(2, 2, 4),(5, 5, 1)]`
If A = `[(3/5, 2/5),(x, y)]` and A2 = I, find x,y
Given matrix, X = `[(1, 1),(8, 3)]` and I = `[(1, 0),(0, 1)]`, prove that X2 = 4X + 5I