Advertisements
Advertisements
प्रश्न
If `A = [(2, 5),(1, 3)]`, `B = [(4, -2),(-1, 3)]` and I is Identity matrix of same order and `A^t` is the transpose of matrix A find `A^t.B + BI`
उत्तर
`A = [(2, 5),(1, 3)]`
`∴ A^t = [(2, 1),(5, 3)]`
`A^t.B = [(2, 1),(5, 3)][(4, -2),(-1, 3)]`
`= [(2 xx 4 + 1 xx (-1),2 xx (-2) + 1 xx 3),(5 xx 4 + 3 xx(-1), 5 xx (-2)+ 3 xx 3)]`
`= [(8-1,-4+3),(20-3,-10+9)]`
`= [(7, -1),(17, -1)]`
`B.I = [(4, -2),(-1, 3)][(1, 0),(0, 1)]`
`= [(4, -2),(-1, 3)]`
`∴ A^t.B + BI = [(7, -1),(17, -1)] + [(4, -2),(-1, 3)]`
`= [(11, -3),(16, 2)]`
APPEARS IN
संबंधित प्रश्न
If P = `[(1, 2),(2, -1)]` and Q = `[(1, 0),(2, 1)]`, then compute:
- P2 – Q2
- (P + Q)(P – Q)
Is (P + Q)(P – Q) = P2 – Q2 true for matrix algebra?
If A = `[(0, -1),(4, -3)]`, B = `[(-5),(6)]` and 3A × M = 2B; find matrix M.
Given A = `[(2, -1),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, find the matrix X such that : A + X = 2B + C.
Find the positive integers p and q such that :
`[p q][p/q]= [25]`
If A = [4 7] and B = [3 l], find: A - B
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
(AB)C = A(BC),
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]`,find values of x and y
Find the values of x, y, a and b, if `[(3x + 4y, 2, x - 2y),(a + b, 2a - b, -1)] = [(2, 2, 4),(5, 5, 1)]`
If A = `[(3, -4),(-1, 2)]`, find matrix B such that BA = I,where I is unity matrix of order 2
Choose the correct answer from the given four options :
If A + B = `[(1, 0),(1, 1)]` and A – 2B = `[(-1, 1),(0, -1)]` then A is equal to