Advertisements
Advertisements
प्रश्न
If A = `[(3, -4),(-1, 2)]`, find matrix B such that BA = I,where I is unity matrix of order 2
उत्तर
A = `[(3, -4),(-1, 2)]`
BA = I, where I is unity matrix of order 2
∴ I = `[(1, 0),(0, 1)]`
Let B = `[(a, b),(c, d)]`
∴ BA = `[(a, b),(c,d)] xx [(3, -4),(-1, 2)] `
= `[(3a - b, -4a + 2b),(3c - d, -4c + 2d)]`
∴ `[(3a - b, -4a + 2b),(3c - d, -4c + 2d)] = [(1, 0),(0, 1)]`
Comparing the corresponding terms, we get
3a – b = 1,
–4a + 2b = 0
⇒2b = 4a
⇒ b = 2a
∴ 3a – b = 1
⇒ 3a – 2a = 1
⇒ a = 1
and
b = 2a
⇒ b = 2 x 1 = 2
∴ a = 1, b = 2
and
3c – d = 0
⇒ d = 3c
–4c + 2d = 1
⇒ –4c + 2 x 3c = 1
⇒ –4c + 6c = 1
⇒ 2x = 1
⇒ c = `(1)/(2)`
and
d = 3c = `3 xx (1)/(2) = (3)/(2)`
Hence a = 1, b = 2, c = `(1)/(2), "d" = (3)/(2)`
∴ Matrix B = `[(1, 2),(1/2, 3/2)]`.
APPEARS IN
संबंधित प्रश्न
Given `[(2, 1),(-3,4)]` . X = `[(7),(6)]`. Write:
- the order of the matrix X.
- the matrix X.
Evaluate:
`[(4 sin 30°, 2 cos 60°),(sin 90°, 2 cos 0°)] [(4, 5),(5, 4)]`
If A = `[(4, 2),(1,1)]`, find (A – 2I)(A – 3I).
Evaluate the following :
`|(2 , -5),(0 , -3)| |(1 , -1),(3 , 2)|`
If A = `[(3, 7),(2, 4)]`, B = `[(0, 2),(5, 3)]` and C = `[(1, -5),(-4, 6)]`. Find AB – 5C.
Given matrix A = `[(4sin30^@,cos0^@), (cos0^@,4sin30^@)] and B = [(4), (5)]` If AX = B.
Find the matrix 'X'
Find x, y if `[(-2, 0),(3, 1)] [(-1),(2x)] +3[(-2),(1)] = 2[(y),(3)]`.
Find x and y, if
`[(-3, 2),(0, -5)] [(x),(2)] = [(-5), (y)]`
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.
Find a, b, c and d if `3[(a, b),(c, d)] = [(4, a + b),(c + d, 3)] + [(a, 6),(-1, 2d)]`