Advertisements
Advertisements
प्रश्न
If A = `[(3, -4),(-1, 2)]`, find matrix B such that BA = I,where I is unity matrix of order 2
उत्तर
A = `[(3, -4),(-1, 2)]`
BA = I, where I is unity matrix of order 2
∴ I = `[(1, 0),(0, 1)]`
Let B = `[(a, b),(c, d)]`
∴ BA = `[(a, b),(c,d)] xx [(3, -4),(-1, 2)] `
= `[(3a - b, -4a + 2b),(3c - d, -4c + 2d)]`
∴ `[(3a - b, -4a + 2b),(3c - d, -4c + 2d)] = [(1, 0),(0, 1)]`
Comparing the corresponding terms, we get
3a – b = 1,
–4a + 2b = 0
⇒2b = 4a
⇒ b = 2a
∴ 3a – b = 1
⇒ 3a – 2a = 1
⇒ a = 1
and
b = 2a
⇒ b = 2 x 1 = 2
∴ a = 1, b = 2
and
3c – d = 0
⇒ d = 3c
–4c + 2d = 1
⇒ –4c + 2 x 3c = 1
⇒ –4c + 6c = 1
⇒ 2x = 1
⇒ c = `(1)/(2)`
and
d = 3c = `3 xx (1)/(2) = (3)/(2)`
Hence a = 1, b = 2, c = `(1)/(2), "d" = (3)/(2)`
∴ Matrix B = `[(1, 2),(1/2, 3/2)]`.
APPEARS IN
संबंधित प्रश्न
if A = `[(2,3),(5,7)]`, B = `[(0,4),(-1,7)]` and c = `[(1,0),(-1, 4)]`, find AC + B2 – 10C.
Evaluate:
`[(4 sin 30°, 2 cos 60°),(sin 90°, 2 cos 0°)] [(4, 5),(5, 4)]`
If A = `[(0, -1),(4, -3)]`, B = `[(-5),(6)]` and 3A × M = 2B; find matrix M.
Find the value of x, given that A2 = B,
A = `[(2, 12),(0, 1)]` and B = `[(4, x),(0, 1)]`
If P = (8 , 5),(7 , 2) , find Pt
Given matrix A = `[(4sin30^@,cos0^@), (cos0^@,4sin30^@)] and B = [(4), (5)]` If AX = B.
Find the matrix 'X'
Find the value of x given that A2 = B
A = `[(2, 12),(0 , 1)]` B = `[(4, x),(0, 1)]`
If A = `[(3 , 1),(-1 , 2)]` and I = `[(1 , 0),(0, 1)]`
find A2 - 5A + 7 I.
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
(AB)C = A(BC),