Advertisements
Advertisements
प्रश्न
if A = `[(2,3),(5,7)]`, B = `[(0,4),(-1,7)]` and c = `[(1,0),(-1, 4)]`, find AC + B2 – 10C.
उत्तर
A = `[(2,3),(5,7)]`, B = `[(0,4),(-1,7)]` and c = `[(1,0),(-1, 4)]`
Now, AC = A x C = `[(2,3),(5,7)] xx [(1,0),(-1,4)]`
`= [(2xx1+3xx(-1), 2xx0+3xx4), (5xx1+7xx(-1),5xx0+7xx4)]`
`= [(2-3, 0+12),(5-7, 0+28)]`
`= [(-1,12),(-2, 28)]`
And B2 = B X B = `[(0,4),(-1,7)]xx[(0,4),(-1,7)]`
`= [(0xx0+4xx(-1), 0xx4+4xx7),(-1xx0+7xx(-1), -1xx4+7xx7)]`
`= [(0-4,0+28),(0-7,-4+49)]`
`= [(-4,28),(-7,45)]`
Now, AC + B2 - 10C = `[(-1,12),(-2,28)] + [(-4,28),(-7,45)] - 10[(1,0),(-1,4)]`
`= [(-1,12),(-2,28)] + [(-4,28),(-7,45)] - [(10,0),(-10,40)]`
`= [(-1-4-10, 12+28-0),(-2-7+10, 28+45-40)]`
`= [(-15,40),(1,33)]`
APPEARS IN
संबंधित प्रश्न
Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.
If P = `[(1, 2),(2, -1)]` and Q = `[(1, 0),(2, 1)]`, then compute:
- P2 – Q2
- (P + Q)(P – Q)
Is (P + Q)(P – Q) = P2 – Q2 true for matrix algebra?
Evaluate:
`[(cos 45°, sin 30°),(sqrt(2) cos 0°, sin 0°)] [(sin 45°, cos 90°),(sin 90°, cot 45°)]`
If `A = [(2, 5),(1, 3)]`, `B = [(4, -2),(-1, 3)]` and I is Identity matrix of same order and `A^t` is the transpose of matrix A find `A^t.B + BI`
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` , find : A + B
Evaluate the following :
`|(-2 , 3),(-1 , 4)| |(6 , 4),(3 ,- 1)|`
If A = `[(2, -1),(-4, 5)] and "B" = [(-3),(2)]` find the matrix C such that AC = B
If B = `[(-4, 2),(5, -1)] and "C" = [(17, -1),(47, -13)]` find the matrix A such that AB = C
Choose the correct answer from the given four options :
If `x[(2),(3)] + y[(-1),(0)] = [(10),(6)]` then the values of x and y are
Find a, b, c and d if `3[(a, b),(c, d)] = [(4, a + b),(c + d, 3)] + [(a, 6),(-1, 2d)]`