Advertisements
Advertisements
प्रश्न
Find a, b, c and d if `3[(a, b),(c, d)] = [(4, a + b),(c + d, 3)] + [(a, 6),(-1, 2d)]`
उत्तर
Given
`3[(a, b),(c, d)] = [(4, a + b),(c + d, 3)] + [(a, 6),(-1, 2d)]`
⇒ `[(3a, 3b),(3c, 3d)] = [(4 + a, a + b + 6),(c + d - 1,3 + 2d)]`
Comparing the corresponding elements:
3a = 4 + a
⇒ 3a – a = 4
⇒ 2a = 4
∴ a = 2
3b = a + b + 6
⇒ 3b – b = 2 + 6
⇒ 2b = 8
∴ b = 4
3d = 3 + 2d
⇒ 3d - 2d = 3
∴ d = 3
3c = c + d – 1
⇒ 3c – c = 3 – 1
2c = 2
⇒ c = 1
Hence a = 2, b = 4, c = 1, d = 3.
APPEARS IN
संबंधित प्रश्न
if A = `[(2,3),(5,7)]`, B = `[(0,4),(-1,7)]` and c = `[(1,0),(-1, 4)]`, find AC + B2 – 10C.
If A = `[(2, 1),(1, 3)]` and B = `[(3),(-11)]`, find the matrix X such that AX = B.
If A = `[(0, -1),(4, -3)]`, B = `[(-5),(6)]` and 3A × M = 2B; find matrix M.
Find the value of x, given that A2 = B,
A = `[(2, 12),(0, 1)]` and B = `[(4, x),(0, 1)]`
If `|(3"a" + 2"b" , 2"a" - "b"),(4"p" - 3"q" , 2"p" + "q")|` = `|(12 , 1),(16 , 8)|` , find the values of a , b , p and q.
If A = `[(1,3), (3,4)]` B = `[(-2,1), (-3,2)]` and `A^2 - 5B^2 = 5C` Find the matrix C where C is a 2 by 2 matrix.
Find x and y, if
`[(-3, 2),(0, -5)] [(x),(2)] = [(-5), (y)]`
Find x and y if
`[( x , 3x),(y , 4y)][(2),(1)] = [(5),(12)]`.
If A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`, find matrix X such that 3A + 5B - 2X = 0.
If A = `[(2, -1),(-4, 5)] and "B" = [(-3),(2)]` find the matrix C such that AC = B