Advertisements
Advertisements
प्रश्न
If A = `[(1,3), (3,4)]` B = `[(-2,1), (-3,2)]` and `A^2 - 5B^2 = 5C` Find the matrix C where C is a 2 by 2 matrix.
उत्तर
A2 − 5B2 = 5C
`A = [(1,3),(3,4)], B = [(-2,1),(-3,2)]`
Step 1: Compute A2
`A^2 = A.A = [(1,3),(3,4)].[(1,3),(3,4)]`
Perform matrix multiplication:
`A^2 = [(1xx1 + 3xx3,1xx3+3xx4),(3xx1+4xx3,3xx3+4xx4)]`
`A^2 = [(1+9,3+12),(3+12,9+16)]`
`A^2 = [(10,15),(15,25)]`
Step 2: Compute B2
`B^2 = BxxB = [(-2,1),(-3,2)]xx[(-2,1),(-3,2)]`
Perform matrix multiplication:
`B^2 = [(-2xx-2+1xx-3,-2xx1+1xx2),(-3xx-2+2xx-3,-3xx1+2xx2)]`
`B^2 = [(4-3,-2+2),(6-6,-3+4)]`
`B^2 = [(1,0),(0,1)]`
Step 3: Compute 5B2
`5B^2 = 5xx[(1,0),(0,1)]`
`5B^2 = [(5,0),(0,5)]`
Step 4: Compute A2−5B2
`A^2 - 5B^2 = [(10,15),(15,25)]-[(5,0),(0,5)]`
`A^2 - 5B^2 = [(10-5,15-0),(15-0,25-5)]`
`A^2 - 5B^2 = [(5,15),(15,20)]`
Step 5: Solve for C
`A^2 - 5B^2 = 5C`
`5C = [(5,15),(15,20)]`
Divide each element by 5:
`C= [(1,3),(3,4)]`
APPEARS IN
संबंधित प्रश्न
Given matrix A `[(4 sin 30°, cos 0°),(cos 0°, 4 sin 30°)]` and B = `[(4),(5)]`. If AX = B.
- Write the order of matrix X.
- Find the matrix ‘X’.
If A and B are any two 2 × 2 matrices such that AB = BA = B and B is not a zero matrix, what can you say about the matrix A?
If matrix X = `[(-3, 4),(2, -3)][(2),(-2)]` and 2X – 3Y = `[(10),(-8)]`, find the matrix ‘X’ and matrix ‘Y’.
Given matrix A = `[(4sin30^@,cos0^@), (cos0^@,4sin30^@)] and B = [(4), (5)]` If AX = B.
Find the matrix 'X'
Find x, y if `[(-2, 0),(3, 1)] [(-1),(2x)] +3[(-2),(1)] = 2[(y),(3)]`.
If A = `[(3 , 1),(-1 , 2)]` and I = `[(1 , 0),(0, 1)]`
find A2 - 5A + 7 I.
Find the values of x and y if : `[(2x + y),(3x - 2y)] = [(5),(4)]`
Find the value of x if `[(3x + y, -y),(2y - x, 3)] = [(1, 2),(-5, 3)]`
If B = `[(-4, 2),(5, -1)] and "C" = [(17, -1),(47, -13)]` find the matrix A such that AB = C
Choose the correct answer from the given four options :
If B = `[(1, 5),(0, 3)]` and A – 2B = `[(0, 4),(-7, 5)]` then the matrix A is equal to