Advertisements
Advertisements
प्रश्न
Given matrix A `[(4 sin 30°, cos 0°),(cos 0°, 4 sin 30°)]` and B = `[(4),(5)]`. If AX = B.
- Write the order of matrix X.
- Find the matrix ‘X’.
उत्तर
A = \[\begin{bmatrix} 4 \sin 30^\circ & \cos0^\circ\\ \cos0^\circ & 4 \sin 30^\circ \end{bmatrix}\]and B = \[{\begin{bmatrix} {4}\\{5}\end{bmatrix}}\]
1. Let the order of matrix X = m × n
Order of matrix A = 2 × 2
Order of matrix B = 2 × 1
Now, AX = B
⇒ Order of matrix X = m × n = 2 × 1
2. Let the matrix X = \[\begin{bmatrix}x\\y\end{bmatrix}\]
AX = B
⇒ \[\begin{bmatrix} 4 \sin 30^\circ & \cos0^\circ\\ \cos0^\circ & 4 \sin 30^\circ \end{bmatrix}\] \[\begin{bmatrix}x \\ y\end{bmatrix}\] \[{\begin{bmatrix} {4}\\{5}\end{bmatrix}}\]
⇒\[\begin{bmatrix}4(\frac{1}{2})&1\\1&4(\frac{1}{2})\end{bmatrix}\]\[\begin{bmatrix}x\\y\end{bmatrix}\] = \[\begin{bmatrix}4\\5\end{bmatrix}\]
⇒\[\begin{bmatrix}2&1\\1&2\end{bmatrix}\]\[\begin{bmatrix}x\\y\end{bmatrix}\] = \[\begin{bmatrix}4\\5\end{bmatrix}\]
⇒\[\begin{bmatrix}2x + y\\x + 2y\end{bmatrix}\] = \[\begin{bmatrix}4\\5\end{bmatrix}\]
⇒ 2x + y = 4 ...(i)
And x + 2y = 5 ...(ii)
Subtracting (ii) from (i), we get
⇒ 2x + y – (x + 2y) = 4 – 5
⇒ 2x + y – x – 2y = 4 – 5
x – y = –1 ...(iii)
Adding (i) and (ii), we get
⇒ 2x + y + x + 2y = 4 + 5
⇒ 3x + 3y = 9
⇒ x + y = 3 ...(iv)
Adding (iii) and (iv), we get
2x = 2
⇒ x = 1
Substitute x in (iv), we get y = 2
Hence, the matrix X = \[\begin{bmatrix}1\\2\end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.
Given A = `[(3, -2),(-1, 4)]`, B = `[(6),(1)]`, C = `[(-4),(5)]` and D = `[(2),(2)].` Find : AB + 2C – 4D
If `[(a, 3),(4, 1)] + [(2, b),(1, -2)] - [(1, 1),(-2, c)] = [(5, 0),(7, 3)]`, find the values of a, b and c.
Let A = `[(4, -2),(6, -3)]`, B = `[(0, 2),(1, -1)]` and C = `[(-2, 3),(1, -1)]`. Find A2 – A + BC
Find X and Y , if `|(1,2),(2 , -3)| |(x),(y)| = |(-1) , (12)|`
Solve for x and y `[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.
Find the values of x, y and z if `[(x + 2, 6),(3, 5z)] = [(-5, y^2 + y),(3, 20)]`
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : BA
Given matrix, X = `[(1, 1),(8, 3)]` and I = `[(1, 0),(0, 1)]`, prove that X2 = 4X + 5I