Advertisements
Advertisements
प्रश्न
Given matrix A `[(4 sin 30°, cos 0°),(cos 0°, 4 sin 30°)]` and B = `[(4),(5)]`. If AX = B.
- Write the order of matrix X.
- Find the matrix ‘X’.
उत्तर
A = \[\begin{bmatrix} 4 \sin 30^\circ & \cos0^\circ\\ \cos0^\circ & 4 \sin 30^\circ \end{bmatrix}\]and B = \[{\begin{bmatrix} {4}\\{5}\end{bmatrix}}\]
1. Let the order of matrix X = m × n
Order of matrix A = 2 × 2
Order of matrix B = 2 × 1
Now, AX = B
⇒ Order of matrix X = m × n = 2 × 1
2. Let the matrix X = \[\begin{bmatrix}x\\y\end{bmatrix}\]
AX = B
⇒ \[\begin{bmatrix} 4 \sin 30^\circ & \cos0^\circ\\ \cos0^\circ & 4 \sin 30^\circ \end{bmatrix}\] \[\begin{bmatrix}x \\ y\end{bmatrix}\] \[{\begin{bmatrix} {4}\\{5}\end{bmatrix}}\]
⇒\[\begin{bmatrix}4(\frac{1}{2})&1\\1&4(\frac{1}{2})\end{bmatrix}\]\[\begin{bmatrix}x\\y\end{bmatrix}\] = \[\begin{bmatrix}4\\5\end{bmatrix}\]
⇒\[\begin{bmatrix}2&1\\1&2\end{bmatrix}\]\[\begin{bmatrix}x\\y\end{bmatrix}\] = \[\begin{bmatrix}4\\5\end{bmatrix}\]
⇒\[\begin{bmatrix}2x + y\\x + 2y\end{bmatrix}\] = \[\begin{bmatrix}4\\5\end{bmatrix}\]
⇒ 2x + y = 4 ...(i)
And x + 2y = 5 ...(ii)
Subtracting (ii) from (i), we get
⇒ 2x + y – (x + 2y) = 4 – 5
⇒ 2x + y – x – 2y = 4 – 5
x – y = –1 ...(iii)
Adding (i) and (ii), we get
⇒ 2x + y + x + 2y = 4 + 5
⇒ 3x + 3y = 9
⇒ x + y = 3 ...(iv)
Adding (iii) and (iv), we get
2x = 2
⇒ x = 1
Substitute x in (iv), we get y = 2
Hence, the matrix X = \[\begin{bmatrix}1\\2\end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
If A = `[(3, a),(-4, 8)]`, B = `[(c, 4),(-3, 0)]`, C = `[(-1, 4),(3, b)]` and 3A – 2C = 6B, find the values of a, b and c.
If A =`|(1, 9 , 4),(5 , 0 , 3)|` , find negative A
Evaluate the following :
`|(2 , -5),(0 , -3)| |(1 , -1),(3 , 2)|`
Find X and Y , if `|(1,2),(2 , -3)| |(x),(y)| = |(-1) , (12)|`
Given A = `[(p , 0),(0, 2)], "B" = [(0 , -q), (1, 0)], "C" = [(2, -2),(2, 2)]` and BA = C2.
Find the values of p and q.
Find the value of x given that A2 = B
A = `[(2, 12),(0 , 1)]` B = `[(4, x),(0, 1)]`
If A = `[(3 , 1),(-1 , 2)]` and I = `[(1 , 0),(0, 1)]`
find A2 - 5A + 7 I.
Let A = `[(1 , 0),(2 , 1)]`, B = `[(2 , 3),(-1 , 0)]`. Find A2 + AB + B2
Choose the correct answer from the given four options :
If B = `[(1, 5),(0, 3)]` and A – 2B = `[(0, 4),(-7, 5)]` then the matrix A is equal to
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : 2A – 3B