Advertisements
Advertisements
प्रश्न
Find the value of x given that A2 = B
A = `[(2, 12),(0 , 1)]` B = `[(4, x),(0, 1)]`
उत्तर
A = `[(2, 12),(0 , 1)]`
∴ A2 = `[(2 , 12),(0, 1)][(2, 12),(0,1)]`
= `[(4 , 36),(0, 1)]`
∵ A2 = B (given)
∴ `[(4, 36),(0, 1)] = [(4, x),(0, 1)]`
∴ x = 36.
APPEARS IN
संबंधित प्रश्न
If A = `[(1, 3),(3, 4)]`, B = `[(-2, 1),(-3, 2)]` and A2 – 5B2 = 5C. Find matrix C where C is a 2 by 2 matrix.
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find (AB)B
Solve for x and y :
`[(3,-1),(2,-1)][(-2),(4)]=[(x),(y)]`
Given `[["4 " " 2" ],[" -1 "" 1 " ]]` M = 6I , where M is a matrix and I is unit matrix of order 2×2.
(i) State the order of matrix M.
(ii) Find the matrix M.
If A = [4 7] and B = [3 l], find : 2A - 3B
If P = `|(2,9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` find 3P - 2Q
If P = (8 , 5),(7 , 2) , find Pt
Evaluate the following :
`|(-2 , 3),(-1 , 4)| |(6 , 4),(3 ,- 1)|`
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : 2A – 3B
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : BA