Advertisements
Advertisements
प्रश्न
Given `[["4 " " 2" ],[" -1 "" 1 " ]]` M = 6I , where M is a matrix and I is unit matrix of order 2×2.
(i) State the order of matrix M.
(ii) Find the matrix M.
उत्तर
(i) `[["4 " " 2" ],[" -1 "" 1 " ]] M = 6I , 6 [[ "1 " " 0" ],[" 0 " " 1 " ]]`
`[["4 " " 2" ],[" -1 "" 1 " ]] M = [[ "6 " " 0" ],[" 0 " " 6 " ]]`
∴ M has the order of 2 × 2
(ii) Let us assume the matrix M = `[["a " " b" ],[" c " " d "]]`
`[["4 " " 2" ],[" -1 "" 1 " ]] [["a " " b" ],[" c " " d "]] = [[ "6 " " 0" ],[" 0 " " 6 " ]]`
⇒ `[["4a + 2c " " 4b + 2d" ],["-a + c " " -b + d" ]] = [[ "6 " " 0" ],[" 0 " " 6 " ]]`
⇒ -a + c = 0 ⇒ a = c
4b + 2d = 0
⇒ 4b = -2d
d = - 2b
Now , 4a + 2c = 6 ⇒ 4a + 2a = 6 ⇒ 6a= 6 ⇒ a = 1 - C
also , - b + d = 6
- b + (-2b) = 6
- 3b = 6
b = -2
∴ a = 1 , b = -2 , c = 1 , d = 4
APPEARS IN
संबंधित प्रश्न
if `A = [(3,x),(0,1)], B = [(9,16),(0,-y)]`, Find x and y where `A^2 = B`
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find A(BA)
Solve for x and y :
`[(3,-1),(2,-1)][(-2),(4)]=[(x),(y)]`
Given matrix B =`[(1,1), (8,3)]` Find the matrix X if, X = B2 - 4B. Hence, solve for a and b given X`[(a), (b)] = [(5), (50)]`
Given A = `[(p , 0),(0, 2)], "B" = [(0 , -q), (1, 0)], "C" = [(2, -2),(2, 2)]` and BA = C2.
Find the values of p and q.
If `"A" = [(a , b),(c , d)] and "I" = [(1 , 0),(0 , 1)]` show that A2 - (a + d) A = (bc - ad) I.
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]`,find values of x and y
Choose the correct answer from the given four options :
If `[(x + 2y, -y),(3x, 7)] = [(-4, 3),(6, 4)]` then the values of x and y are
Given matrix, X = `[(1, 1),(8, 3)]` and I = `[(1, 0),(0, 1)]`, prove that X2 = 4X + 5I