Advertisements
Advertisements
प्रश्न
Given matrix, X = `[(1, 1),(8, 3)]` and I = `[(1, 0),(0, 1)]`, prove that X2 = 4X + 5I
उत्तर
X2 = `[(1, 1),(8, 3)][(1, 1),(8, 3)]`
= `[(1 xx 1 + (1) xx (8), 1 xx (1) + (1) xx 3),((8) xx 1 + 3 xx (8),(8) xx (1) + 3 xx 3)]`
= `[(1 + 8, 1 + 3),(8 + 24, 8 + 9)]`
∴ X2 = `[(9, 4),(32, 17)]`
And 4X = `4[(1, 1),(8, 3)]`
= `[(4, 4),(32, 12)]`
4X + 5I = `[(4, 4),(32, 12)] + [(5, 0),(0, 5)]`
= `[(9, 4),(32, 17)]`
∴ X2 = 4X + 5I,
Hence proved
APPEARS IN
संबंधित प्रश्न
if `A [(3,7),(2,4)], B = [(0,2),(5,3)]` and `C = [(1,-5),(-4,6)]` Find AB - 5C
Find x and y, if : `[(x, 3x),(y, 4y)][(2),(1)] = [(5),(12)]`.
Find the positive integers p and q such that :
`[p q][p/q]= [25]`
If P = `|(2,9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` find 3P - 2Q
If `|(3"a" + 2"b" , 2"a" - "b"),(4"p" - 3"q" , 2"p" + "q")|` = `|(12 , 1),(16 , 8)|` , find the values of a , b , p and q.
Evaluate the following :
`|(-2 , 3),(-1 , 4)| |(6 , 4),(3 ,- 1)|`
Find x, y if `[(-2, 0),(3, 1)] [(-1),(2x)] +3[(-2),(1)] = 2[(y),(3)]`.
A = `[(3 , 1),(-1 , 2)]`, show that A2 - 5A + 7 I2 = 0.
Find the value of x if `[(3x + y, -y),(2y - x, 3)] = [(1, 2),(-5, 3)]`
Choose the correct answer from the given four options :
If B = `[(1, 5),(0, 3)]` and A – 2B = `[(0, 4),(-7, 5)]` then the matrix A is equal to