Advertisements
Advertisements
Question
Given matrix, X = `[(1, 1),(8, 3)]` and I = `[(1, 0),(0, 1)]`, prove that X2 = 4X + 5I
Solution
X2 = `[(1, 1),(8, 3)][(1, 1),(8, 3)]`
= `[(1 xx 1 + (1) xx (8), 1 xx (1) + (1) xx 3),((8) xx 1 + 3 xx (8),(8) xx (1) + 3 xx 3)]`
= `[(1 + 8, 1 + 3),(8 + 24, 8 + 9)]`
∴ X2 = `[(9, 4),(32, 17)]`
And 4X = `4[(1, 1),(8, 3)]`
= `[(4, 4),(32, 12)]`
4X + 5I = `[(4, 4),(32, 12)] + [(5, 0),(0, 5)]`
= `[(9, 4),(32, 17)]`
∴ X2 = 4X + 5I,
Hence proved
APPEARS IN
RELATED QUESTIONS
Given matrix A `[(4 sin 30°, cos 0°),(cos 0°, 4 sin 30°)]` and B = `[(4),(5)]`. If AX = B.
- Write the order of matrix X.
- Find the matrix ‘X’.
If A = `[(3, 1),(-1, 2)]` and I = `[(1, 0),(0, 1)]`, find A2 – 5A + 7I.
Given A = `[(3, -2),(-1, 4)]`, B = `[(6),(1)]`, C = `[(-4),(5)]` and D = `[(2),(2)].` Find : AB + 2C – 4D
If A = [4 7] and B = [3 1] , find: A+2B
If P =`|(2,9),(5,7)|` and Q = `|(7,3),(4,1)|` find 2Q - P
Find X and Y , if `|(1,2),(2 , -3)| |(x),(y)| = |(-1) , (12)|`
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
Find the values of x, y, a and b if `[(x - 2, y),(a + 2b, 3a - b)] = [(3, 1),(5, 1)]`
Choose the correct answer from the given four options :
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]` then the values of x and y are
Find a and b if `[(a - b, b - 4),(b + 4, a - 2)] [(2, 0),(0, 2)] = [(2, -2),(14, 0)]`