English

Given matrix, X = [1183] and I = [1001], prove that X2 = 4X + 5I - Mathematics

Advertisements
Advertisements

Question

Given matrix, X = `[(1, 1),(8, 3)]` and I = `[(1, 0),(0, 1)]`, prove that X2 = 4X + 5I

Sum

Solution

X2 = `[(1, 1),(8, 3)][(1, 1),(8, 3)]`

= `[(1 xx 1 + (1) xx (8), 1 xx (1) + (1) xx 3),((8) xx 1 + 3 xx (8),(8) xx (1) + 3  xx 3)]`

= `[(1 + 8, 1 + 3),(8 + 24, 8 + 9)]`

∴ X2 = `[(9, 4),(32, 17)]`

And 4X = `4[(1, 1),(8, 3)]`

= `[(4, 4),(32, 12)]` 

4X + 5I = `[(4, 4),(32, 12)] + [(5, 0),(0, 5)]`

= `[(9, 4),(32, 17)]`

∴ X2 = 4X + 5I,

Hence proved

shaalaa.com
  Is there an error in this question or solution?
2024-2025 (April) Specimen Paper

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×