Advertisements
Advertisements
Question
Find a and b if `[(a - b, b - 4),(b + 4, a - 2)] [(2, 0),(0, 2)] = [(2, -2),(14, 0)]`
Solution
Given
`[(a - b, b - 4),(b + 4, a - 2)] [(2, 0),(0, 2)] = [(2, -2),(14, 0)]`
⇒ `[(2a - 2b + 0, 0 + 2a - 2b),(2b + 8 + 0, 0 + 2a - 4)] = [(-2, -2),(14, 0)]`
⇒ `[(2a - 2b, 2a - 2b),(2b + 8, 2a - 4)] = [(-2, -2),(14, 0)]`
Comparing the corresponding elements
2a – 4 = 0
⇒ 2a = 4
⇒ a = 2
2a – 2b = –2
⇒ 2 x 2 – 2b = –2
⇒ 4 – 2b = –2
⇒ –2b = –2 – 4 = –6
⇒ b = 3
Hence a = 2, b = 3.
APPEARS IN
RELATED QUESTIONS
Solve for x and y :
`[(3,-1),(2,-1)][(-2),(4)]=[(x),(y)]`
If `|(3"a" + 2"b" , 2"a" - "b"),(4"p" - 3"q" , 2"p" + "q")|` = `|(12 , 1),(16 , 8)|` , find the values of a , b , p and q.
Find X and Y , if `|(1,2),(2 , -3)| |(x),(y)| = |(-1) , (12)|`
If A = `[(3, x),(0, 1)]` and B = `[(9, 16),(0, -y)]`, find x and y when A2 = B.
Let A = `[(2, 1),(0, -2)]`, B = `[(4, 1),(-3, -2)]` and C = `[(-3, 2),(-1, 4)]`. Find A2 + AC – 5B.
If A = `[(1,3), (3,4)]` B = `[(-2,1), (-3,2)]` and `A^2 - 5B^2 = 5C` Find the matrix C where C is a 2 by 2 matrix.
Find X and Y, if
`[(2x, x),(y , 3y)][(3),(2)] = [(16),(9)]`
Find x and y if:
`((-3, 2),(0 , 5)) ((x),(y)) = ((-5),(y))`
Find the values of x, y, a and b, if `[(3x + 4y, 2, x - 2y),(a + b, 2a - b, -1)] = [(2, 2, 4),(5, 5, 1)]`
If B = `[(-4, 2),(5, -1)] and "C" = [(17, -1),(47, -13)]` find the matrix A such that AB = C