Advertisements
Advertisements
Question
Let A = `[(2, 1),(0, -2)]`, B = `[(4, 1),(-3, -2)]` and C = `[(-3, 2),(-1, 4)]`. Find A2 + AC – 5B.
Solution
Given: A = `[(2, 1),(0, -2)]`, B = `[(4, 1),(-3, -2)]` and C = `[(-3, 2),(-1, 4)]`
Now,
A2 = `[(2, 1),(0, -2)][(2, 1),(0, -2)]`
= `[(4 + 0, 2 - 2),(0 + 0, 0 + 4)]`
= `[(4, 0),(0, 4)]`
5B = `[(20, 5),(-15, -10)]`
AC = `[(2, 1),(0, -2)][(-3, 2),(-1, 4)]`
= `[(-6 - 1, 4 + 4),(0 + 2, 0 - 8)]`
= `[(-7, 8),(2, -8)]`
∴ A2 + AC – 5B = `[(4, 0),(0, 4)] + [(-7, 8),(2, -8)] - [(20, 5),(-15, -10)]`
= `[(4 - 7 - 20, 0 + 8 - 5),(0 + 2 + 15, 4 - 8 + 10)]`
= `[(-23, 3),(17, 6)]`
RELATED QUESTIONS
If `[(a, 3),(4, 1)] + [(2, b),(1, -2)] - [(1, 1),(-2, c)] = [(5, 0),(7, 3)]`, find the values of a, b and c.
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find A(BA)
If matrix X = `[(-3, 4),(2, -3)][(2),(-2)]` and 2X – 3Y = `[(10),(-8)]`, find the matrix ‘X’ and matrix ‘Y’.
If `A = [(2, 5),(1, 3)]`, `B = [(4, -2),(-1, 3)]` and I is Identity matrix of same order and `A^t` is the transpose of matrix A find `A^t.B + BI`
Given A = `[(p, 0),(0, 2)]`, B = `[(0, -q),(1, 0)]`, C = `[(2, -2),(2, 2)]` and BA = C2. Find the values of p and q.
If A = `|(17 , 5 , 19),(11 , 8 , 13)|` and B =`|(9,3,7),(1,6,5)|` , find 2A - 3B
Given that A = `[(3, 0),(0, 4)]` and B = `[(a, b),(0, c)]` and that AB = A + B, find the values of a, b and c.
Find the values of x, y, a and b if `[(x - 2, y),(a + 2b, 3a - b)] = [(3, 1),(5, 1)]`
If B = `[(-4, 2),(5, -1)] and "C" = [(17, -1),(47, -13)]` find the matrix A such that AB = C
Find a, b, c and d if `3[(a, b),(c, d)] = [(4, a + b),(c + d, 3)] + [(a, 6),(-1, 2d)]`