Advertisements
Advertisements
Question
If A = `|(17 , 5 , 19),(11 , 8 , 13)|` and B =`|(9,3,7),(1,6,5)|` , find 2A - 3B
Solution
A = `|(17 , 5 , 19),(11 , 8 , 13)|_(2 xx 3)` B = `|(9,3,7),(1,6,5)|_(2 xx 3)`
2A - 3B = `|(34 , 10 , 38) , (22 , 16 , 26)| - |(27,9 , 21),(3 , 18 , 15)|`
`= |(7 , 1 , 17),(19 , - 2 , 11)|_(2 xx 3)`
APPEARS IN
RELATED QUESTIONS
If A = `[(3, 1),(-1, 2)]` and I = `[(1, 0),(0, 1)]`, find A2 – 5A + 7I.
If P = `[(1, 2),(2, -1)]` and Q = `[(1, 0),(2, 1)]`, then compute:
- P2 – Q2
- (P + Q)(P – Q)
Is (P + Q)(P – Q) = P2 – Q2 true for matrix algebra?
Let A = `[(4, -2),(6, -3)]`, B = `[(0, 2),(1, -1)]` and C = `[(-2, 3),(1, -1)]`. Find A2 – A + BC
Solve for x and y `[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
Find X and Y, if
`[(2x, x),(y , 3y)][(3),(2)] = [(16),(9)]`
Find the value of x given that A2 = B
A = `[(2, 12),(0 , 1)]` B = `[(4, x),(0, 1)]`
Let A = `[(1 , 0),(2 , 1)]`, B = `[(2 , 3),(-1 , 0)]`. Find A2 + AB + B2
Choose the correct answer from the given four options :
If B = `[(1, 5),(0, 3)]` and A – 2B = `[(0, 4),(-7, 5)]` then the matrix A is equal to
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : BA