Advertisements
Advertisements
Question
If P = `[(1, 2),(2, -1)]` and Q = `[(1, 0),(2, 1)]`, then compute:
- P2 – Q2
- (P + Q)(P – Q)
Is (P + Q)(P – Q) = P2 – Q2 true for matrix algebra?
Solution
P2 = `[(1, 2),(2, -1)][(1, 2),(2, -1)]`
= `[(1 + 4, 2 - 2),(2 - 2, 4 + 1)]`
= `[(5, 0),(0, 5)]`
Q2 = `[(1, 0),(2, 1)][(1, 0),(2, 1)]`
= `[(1 + 0, 0 + 0),(2 + 2, 0 + 1)]`
= `[(1, 0),(4, 1)]`
i. P2 – Q2 = `[(5, 0),(0, 5)] - [(1, 0),(4, 1)]`
= `[(4, 0),(-4, 4)]`
P + Q = `[(1, 2),(2,-1)] + [(1, 0),(2, 1)]`
= `[(2, 2),(4, 0)]`
P – Q = `[(1, 2),(2, -1)] - [(1, 0),(2, 1)]`
= `[(0, 2),(0, -2)]`
ii. (P + Q)(P – Q) = `[(2,2),(4, 0)][(0, 2),(0, -2)]`
= `[(0 + 0, 4 - 4),(0 + 0, 8 - 0)]`
= `[(0, 0),(0, 8)]`
Clearly, it can be said that (P + Q)(P – Q) = P2 – Q2 not true for matrix algebra.
APPEARS IN
RELATED QUESTIONS
Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.
If A = `[(2, 1),(1, 3)]` and B = `[(3),(-11)]`, find the matrix X such that AX = B.
If A = `[(3, a),(-4, 8)]`, B = `[(c, 4),(-3, 0)]`, C = `[(-1, 4),(3, b)]` and 3A – 2C = 6B, find the values of a, b and c.
If A = [4 7] and B = [3 1] , find: A+2B
Find X and Y , if `|(1,2),(2 , -3)| |(x),(y)| = |(-1) , (12)|`
A = `[(3 , 1),(-1 , 2)]`, show that A2 - 5A + 7 I2 = 0.
Evaluate x,y if
`[(3 , -2),(-1 , 4)][(2x),(1)]+2[(-4),(5)] = [(8),(4y)]`
Let `"A" = [(4 , -2),(6 , -3)], "B" = [(0 , 2),(1 , -1)] and "C" = [(-2 , 3),(1 , -1)]`. Find A2 - A + BC
Choose the correct answer from the given four options :
If `[(x - 2y, 5),(3, y)] = [(6, 5),(3, -2)]` then the value of x is
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : BA