Advertisements
Advertisements
Question
Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.
Solution
Given B = `[(1, 1),(8, 3)]` and X = B2 – 4B
Now B2 = B × B
= `[(1, 1),(8, 3)] xx [(1, 1),(8, 3)]`
= `[(1 xx 1 + 1 xx 8, 1 xx 1 + 1 xx 3),(8 xx 1 + 3 xx 8, 8 xx 1 + 3 xx 3)]`
= `[(1 + 8, 1 + 3),(8 + 24, 8 + 9)]`
= `[(9, 4),(32, 17)]`
X = B2 – 4B
= `[(9, 4),(32, 17)] - 4[(1, 1),(8, 3)]`
= `[(9, 4),(32, 17)] - [(4, 4),(32, 12)]`
= `[(5, 0),(0, 5)]`
Now `X[(a),(b)] = [(5),(50)]`
`=> [(5, 0),(0, 5)][(a),(b)] = [(5),(50)]`
`=> [(5a + 0b),(0a + 5b)] = [(5),(50)]`
`=> [(5a),(5b)] = [(5),(50)]`
`=>` 5a = 5 and 5b = 50
`=>` a = 1 and b = 10
APPEARS IN
RELATED QUESTIONS
Given `[(2, 1),(-3, 4)] x = [(7),(6)]` Write the matrix x.
If P = `|(2 , 9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` , find 2P + 3Q
Evaluate the following :
`|(2 , -5),(0 , -3)| |(1 , -1),(3 , 2)|`
Given A = `[(2,0), (-1,7)] and 1 = [(1,0), (0,1)]` and A2 = 9A +mI. Find m
Find the value of x given that A2 = B
A = `[(2, 12),(0 , 1)]` B = `[(4, x),(0, 1)]`
Evaluate x,y if
`[(3 , -2),(-1 , 4)][(2x),(1)]+2[(-4),(5)] = [(8),(4y)]`
Let A = `[(1 , 0),(2 , 1)]`, B = `[(2 , 3),(-1 , 0)]`. Find A2 + AB + B2
Choose the correct answer from the given four options :
If `[(x + 2y, 3y),(4x, 2)] = [(0, -3),(8, 2)]` then the value of x – y is
Choose the correct answer from the given four options :
If `x[(2),(3)] + y[(-1),(0)] = [(10),(6)]` then the values of x and y are
Find a and b if `[(a - b, b - 4),(b + 4, a - 2)] [(2, 0),(0, 2)] = [(2, -2),(14, 0)]`