Advertisements
Advertisements
प्रश्न
Let A = `[(2, 1),(0, -2)]`, B = `[(4, 1),(-3, -2)]` and C = `[(-3, 2),(-1, 4)]`. Find A2 + AC – 5B.
उत्तर
Given: A = `[(2, 1),(0, -2)]`, B = `[(4, 1),(-3, -2)]` and C = `[(-3, 2),(-1, 4)]`
Now,
A2 = `[(2, 1),(0, -2)][(2, 1),(0, -2)]`
= `[(4 + 0, 2 - 2),(0 + 0, 0 + 4)]`
= `[(4, 0),(0, 4)]`
5B = `[(20, 5),(-15, -10)]`
AC = `[(2, 1),(0, -2)][(-3, 2),(-1, 4)]`
= `[(-6 - 1, 4 + 4),(0 + 2, 0 - 8)]`
= `[(-7, 8),(2, -8)]`
∴ A2 + AC – 5B = `[(4, 0),(0, 4)] + [(-7, 8),(2, -8)] - [(20, 5),(-15, -10)]`
= `[(4 - 7 - 20, 0 + 8 - 5),(0 + 2 + 15, 4 - 8 + 10)]`
= `[(-23, 3),(17, 6)]`
संबंधित प्रश्न
if `A = [(3,x),(0,1)], B = [(9,16),(0,-y)]`, Find x and y where `A^2 = B`
If A = `[(2, 5),(1, 3)]`, B = `[(4, -2),(-1, 3)]` and I is the identity matric of the same order and At is the transpose of matrix A, find At.B + BI.
Evaluate:
`[(cos 45°, sin 30°),(sqrt(2) cos 0°, sin 0°)] [(sin 45°, cos 90°),(sin 90°, cot 45°)]`
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find A(BA)
Solve for x and y:
`[(x + y, x - 4)][(-1, -2),(2, 2)] = [(-7, -11)]`
If A = `[(3, x),(0, 1)]` and B = `[(9, 16),(0, -y)]`, find x and y when A2 = B.
If A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`, find matrix X such that 3A + 5B - 2X = 0.
If `"A" = [(3 , 1),(2 , 1)] and "B" = [(1 , -2),(5 , 3)]`, then show that (A - B)2 ≠ A2 - 2AB + B2.
Find the values of x, y, a and b if `[(x - 2, y),(a + 2b, 3a - b)] = [(3, 1),(5, 1)]`
Find a, b, c and d if `3[(a, b),(c, d)] = [(4, a + b),(c + d, 3)] + [(a, 6),(-1, 2d)]`