Advertisements
Advertisements
प्रश्न
Find a, b, c and d if `3[(a, b),(c, d)] = [(4, a + b),(c + d, 3)] + [(a, 6),(-1, 2d)]`
उत्तर
Given
`3[(a, b),(c, d)] = [(4, a + b),(c + d, 3)] + [(a, 6),(-1, 2d)]`
⇒ `[(3a, 3b),(3c, 3d)] = [(4 + a, a + b + 6),(c + d - 1,3 + 2d)]`
Comparing the corresponding elements:
3a = 4 + a
⇒ 3a – a = 4
⇒ 2a = 4
∴ a = 2
3b = a + b + 6
⇒ 3b – b = 2 + 6
⇒ 2b = 8
∴ b = 4
3d = 3 + 2d
⇒ 3d - 2d = 3
∴ d = 3
3c = c + d – 1
⇒ 3c – c = 3 – 1
2c = 2
⇒ c = 1
Hence a = 2, b = 4, c = 1, d = 3.
APPEARS IN
संबंधित प्रश्न
if `A [(3,7),(2,4)], B = [(0,2),(5,3)]` and `C = [(1,-5),(-4,6)]` Find AB - 5C
Given A = `[(3, -2),(-1, 4)]`, B = `[(6),(1)]`, C = `[(-4),(5)]` and D = `[(2),(2)].` Find : AB + 2C – 4D
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find A(BA)
If A = [4 7] and B = [3 l], find : 2A - 3B
If A = `|(17 , 5 , 19),(11 , 8 , 13)|` and B =`|(9,3,7),(1,6,5)|` , find 2A - 3B
Given A = `[(2,0), (-1,7)] and 1 = [(1,0), (0,1)]` and A2 = 9A +mI. Find m
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
A = `[(3 , 1),(-1 , 2)]`, show that A2 - 5A + 7 I2 = 0.
Choose the correct answer from the given four options :
If `x[(2),(3)] + y[(-1),(0)] = [(10),(6)]` then the values of x and y are
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : A2