Advertisements
Advertisements
प्रश्न
Given A = `[(2,0), (-1,7)] and 1 = [(1,0), (0,1)]` and A2 = 9A +mI. Find m
उत्तर
A2 = 9A + MI
⇒ A2 - 9A = mI ….(1)
Now, A2 = AA
= `[(2,0), (-1,7)][(2,0), (-1,7)]`
= `[(4,0), (-9,49)]`
Substituting A2 in (1), we have
A2 - 9A = mI
`=> [(4,0), (-9,49)]-9[(2,0), (-1,7)] =m[(1,0), (0,1)]`
`=> [(4,0), (-9,49)] - [(18,0), (-9,63)] = [(m,0), (0,m)]`
`=> [(-14,0), (0,-14)] = [(m,0), (0,m)]`
`=>` m = -14
APPEARS IN
संबंधित प्रश्न
Find the positive integers p and q such that :
`[p q][p/q]= [25]`
If A = `|(17 , 5 , 19),(11 , 8 , 13)|` and B =`|(9,3,7),(1,6,5)|` , find 2A - 3B
Find x and y, if `((x,3x),(y, 4y))((2),(1)) = ((5),(12))`.
If `"A" = [(3 , 1),(2 , 1)] and "B" = [(1 , -2),(5 , 3)]`, then show that (A - B)2 ≠ A2 - 2AB + B2.
Find the value of x if `[(3x + y, -y),(2y - x, 3)] = [(1, 2),(-5, 3)]`
Find the values of x, y, a and b, if `[(3x + 4y, 2, x - 2y),(a + b, 2a - b, -1)] = [(2, 2, 4),(5, 5, 1)]`
If A = `[(2 , -1),(-4, 5)]` and B = [0 -3] find the matrix C such that CA = B
Choose the correct answer from the given four options :
If B = `[(1, 5),(0, 3)]` and A – 2B = `[(0, 4),(-7, 5)]` then the matrix A is equal to
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : BA