Advertisements
Advertisements
प्रश्न
Given A = `[(3, -2),(-1, 4)]`, B = `[(6),(1)]`, C = `[(-4),(5)]` and D = `[(2),(2)].` Find : AB + 2C – 4D
उत्तर
AB = `[(3, -2),(-1, 4)][(6),(1)] = [(18 - 2),(-6 + 4)] = [(16),(-2)]`
2C = `2[(-4),(5)]=[(-8),(10)]`
4D = `4[(2),(2)]=[(8),(8)]`
Now, AB + 2C – 4D = `[(16),(-2)] + [(-8),(10)] - [(8),(8)]`
= `[(16 - 8 - 8),(-2 + 10 - 8)]`
= `[(0),(0)]`
APPEARS IN
संबंधित प्रश्न
If A = `[(1, 3),(3, 4)]`, B = `[(-2, 1),(-3, 2)]` and A2 – 5B2 = 5C. Find matrix C where C is a 2 by 2 matrix.
Evaluate:
`[(4 sin 30°, 2 cos 60°),(sin 90°, 2 cos 0°)] [(4, 5),(5, 4)]`
If A = `[(2, 1, -1),(0, 1, -2)]`, Find At . A where At is the transpose of matrix A.
If A = `[(3, a),(-4, 8)]`, B = `[(c, 4),(-3, 0)]`, C = `[(-1, 4),(3, b)]` and 3A – 2C = 6B, find the values of a, b and c.
Let A = `[(2, 1),(0, -2)]`, B = `[(4, 1),(-3, -2)]` and C = `[(-3, 2),(-1, 4)]`. Find A2 + AC – 5B.
Given A = `[(2,0), (-1,7)] and 1 = [(1,0), (0,1)]` and A2 = 9A +mI. Find m
If A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`, find matrix X such that 3A + 5B - 2X = 0.
If A = `[(2 , -1),(-4, 5)]` and B = [0 -3] find the matrix C such that CA = B
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : 2A – 3B
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : BA