Advertisements
Advertisements
प्रश्न
If A = `[(2, 1, -1),(0, 1, -2)]`, Find At . A where At is the transpose of matrix A.
उत्तर
A = `[(2, 1, -1),(0, 1, -2)]`
At = `[(2, 0),(1, 1), (-1, -2)]`
At . A = `[(2, 0), (1, 1),(-1, -2)][(2, 1, -1),(0, 1, -2)]`
= `[(4 + 0, 2 + 0, -2 - 0),(2 + 0, 1 + 1, -1 - 2),(-2 - 0, -1 - 2, 1 + 4)]`
= `[(4, 2, -2), (2, 2, -3), (-2, -3, 5)]`
APPEARS IN
संबंधित प्रश्न
If A = `[(2, 1),(1, 3)]` and B = `[(3),(-11)]`, find the matrix X such that AX = B.
If `[(a, 3),(4, 1)] + [(2, b),(1, -2)] - [(1, 1),(-2, c)] = [(5, 0),(7, 3)]`, find the values of a, b and c.
Find x and y, if : `[(x, 3x),(y, 4y)][(2),(1)] = [(5),(12)]`.
If P =`|(2,9),(5,7)|` and Q = `|(7,3),(4,1)|` find 2Q - P
If A = `|(17 , 5 , 19),(11 , 8 , 13)|` and B =`|(9,3,7),(1,6,5)|` , find 2A - 3B
Find X and Y, if
`[(2x, x),(y , 3y)][(3),(2)] = [(16),(9)]`
Let `"A" = [(4 , -2),(6 , -3)], "B" = [(0 , 2),(1 , -1)] and "C" = [(-2 , 3),(1 , -1)]`. Find A2 - A + BC
If `"A" = [(a , b),(c , d)] and "I" = [(1 , 0),(0 , 1)]` show that A2 - (a + d) A = (bc - ad) I.
Find the value of x if `[(3x + y, -y),(2y - x, 3)] = [(1, 2),(-5, 3)]`
Find the values of x, y and z if `[(x + 2, 6),(3, 5z)] = [(-5, y^2 + y),(3, 20)]`