Advertisements
Advertisements
प्रश्न
Find the values of x, y and z if `[(x + 2, 6),(3, 5z)] = [(-5, y^2 + y),(3, 20)]`
उत्तर
Comparing the corresponding elements of equal determinents,
x + 2 = -5
⇒ x = –5 – 2 = –7
∴ x = –7, 5z = –20
⇒ z = `-(20)/(5)`
= –4
⇒ y2 + y = 6
⇒ y2 + y – 6 = 0
⇒ y2 + 3y – 2y – 6 = 0
⇒ y(y + 3) – 2(y + 3) = 0
⇒ (y + 3)(y – 2) = 0
Either y + 3 = 0,
then y = –3 or y – 2 = 0,
then y = 2
Hence x = –7, y = –3, 2, z = –4.
APPEARS IN
संबंधित प्रश्न
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find A - 2B
If A = `|(17 , 5 , 19),(11 , 8 , 13)|` and B =`|(9,3,7),(1,6,5)|` , find 2A - 3B
Find x, y if `[(-2, 0),(3, 1)] [(-1),(2x)] +3[(-2),(1)] = 2[(y),(3)]`.
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
If A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`, find matrix X such that 3A + 5B - 2X = 0.
Let `"A" = [(4 , -2),(6 , -3)], "B" = [(0 , 2),(1 , -1)] and "C" = [(-2 , 3),(1 , -1)]`. Find A2 - A + BC
If B = `[(-4, 2),(5, -1)] and "C" = [(17, -1),(47, -13)]` find the matrix A such that AB = C
Choose the correct answer from the given four options :
If B = `[(1, 5),(0, 3)]` and A – 2B = `[(0, 4),(-7, 5)]` then the matrix A is equal to
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`
If A = `[(3/5, 2/5),(x, y)]` and A2 = I, find x,y