Advertisements
Advertisements
प्रश्न
If A = `[(3/5, 2/5),(x, y)]` and A2 = I, find x,y
उत्तर
Given
A = `[(3/5, 2/5),(x , y)]`
A2 = A x A = `[(3/5, 2/5),(x , y)][(3/5, 2/5),(x , y)]`
= `[(9/25 + 2/5x, 6/25 2/5y),(3/5x + xy, 2/5x + y^2)]`
But A2 = I = `[(1, 0),(0, 1)]`
`[(9/25 + 2/5x, 6/25 2/5y),(3/5x + xy, 2/5x + y^2)] = [(1, 0),(0, 1)]`
Comparing the corresponding elements,
`(9)/(25) + (2)/(5)x` = 1
⇒ `(2)/(5)x = 1 - (9)/(25) = (16)/(25)`
x = `(16)/(25) xx (5)/(2) = (8)/(5)`
`(6)/(25) + (2)/(5)y` = 0
⇒ `(2)/(5)y = (-6)/(25)`
y = `(-6)/(25) xx (5)/(2) = (-3)/(5)`
Hence x = `(8)/(5), y = (-3)/(5)`.
APPEARS IN
संबंधित प्रश्न
Given matrix A `[(4 sin 30°, cos 0°),(cos 0°, 4 sin 30°)]` and B = `[(4),(5)]`. If AX = B.
- Write the order of matrix X.
- Find the matrix ‘X’.
Given A = `[(3, -2),(-1, 4)]`, B = `[(6),(1)]`, C = `[(-4),(5)]` and D = `[(2),(2)].` Find : AB + 2C – 4D
Evaluate:
`[(4 sin 30°, 2 cos 60°),(sin 90°, 2 cos 0°)] [(4, 5),(5, 4)]`
If A and B are any two 2 × 2 matrices such that AB = BA = B and B is not a zero matrix, what can you say about the matrix A?
If A = [4 7] and B = [3 1] , find: A+2B
Given A = `[(2,0), (-1,7)] and 1 = [(1,0), (0,1)]` and A2 = 9A +mI. Find m
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.
Find the values of x, y, a and b if `[(x - 2, y),(a + 2b, 3a - b)] = [(3, 1),(5, 1)]`
Choose the correct answer from the given four options :
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]` then the values of x and y are
Find a and b if `[(a - b, b - 4),(b + 4, a - 2)] [(2, 0),(0, 2)] = [(2, -2),(14, 0)]`