Advertisements
Advertisements
प्रश्न
If A = `[(3/5, 2/5),(x, y)]` and A2 = I, find x,y
उत्तर
Given
A = `[(3/5, 2/5),(x , y)]`
A2 = A x A = `[(3/5, 2/5),(x , y)][(3/5, 2/5),(x , y)]`
= `[(9/25 + 2/5x, 6/25 2/5y),(3/5x + xy, 2/5x + y^2)]`
But A2 = I = `[(1, 0),(0, 1)]`
`[(9/25 + 2/5x, 6/25 2/5y),(3/5x + xy, 2/5x + y^2)] = [(1, 0),(0, 1)]`
Comparing the corresponding elements,
`(9)/(25) + (2)/(5)x` = 1
⇒ `(2)/(5)x = 1 - (9)/(25) = (16)/(25)`
x = `(16)/(25) xx (5)/(2) = (8)/(5)`
`(6)/(25) + (2)/(5)y` = 0
⇒ `(2)/(5)y = (-6)/(25)`
y = `(-6)/(25) xx (5)/(2) = (-3)/(5)`
Hence x = `(8)/(5), y = (-3)/(5)`.
APPEARS IN
संबंधित प्रश्न
Given matrix A `[(4 sin 30°, cos 0°),(cos 0°, 4 sin 30°)]` and B = `[(4),(5)]`. If AX = B.
- Write the order of matrix X.
- Find the matrix ‘X’.
if `A = [(3,x),(0,1)], B = [(9,16),(0,-y)]`, Find x and y where `A^2 = B`
If P = `[(1, 2),(2, -1)]` and Q = `[(1, 0),(2, 1)]`, then compute:
- P2 – Q2
- (P + Q)(P – Q)
Is (P + Q)(P – Q) = P2 – Q2 true for matrix algebra?
If `A = [(2, 5),(1, 3)]`, `B = [(4, -2),(-1, 3)]` and I is Identity matrix of same order and `A^t` is the transpose of matrix A find `A^t.B + BI`
Find X and Y , if `|(1,2),(2 , -3)| |(x),(y)| = |(-1) , (12)|`
Find x, y if `[(-2, 0),(3, 1)] [(-1),(2x)] +3[(-2),(1)] = 2[(y),(3)]`.
A = `[(3 , 1),(-1 , 2)]`, show that A2 - 5A + 7 I2 = 0.
Find the values of x, y, a and b, if `[(3x + 4y, 2, x - 2y),(a + b, 2a - b, -1)] = [(2, 2, 4),(5, 5, 1)]`
Find a and b if `[(a - b, b - 4),(b + 4, a - 2)] [(2, 0),(0, 2)] = [(2, -2),(14, 0)]`
Given matrix, X = `[(1, 1),(8, 3)]` and I = `[(1, 0),(0, 1)]`, prove that X2 = 4X + 5I