Advertisements
Advertisements
प्रश्न
Find x, y if `[(-2, 0),(3, 1)] [(-1),(2x)] +3[(-2),(1)] = 2[(y),(3)]`.
उत्तर १
`[(-2, 0),(3, 1)] [(-1),(2x)] +3[(-2),(1)] = 2[(y),(3)]`
`[(2 +0),(-3 + 2x)] + [(-6),(3)] = [(2y),(6)]`
`[(-4),(2x)] = [(2y),(6)]`
⇒ 2y = -4, 2x = 6
⇒ y = -2, x = 3
Thus required values is x = 3, y = -2.
उत्तर २
Given
`[(-2, 0),(3, 1)] [(-1),(2x)] +3[(-2),(1)] = 2[(y),(3)]`
`[(-2x - 1 + 0 xx 2x),(3x - 1 + 1 xx 2x)] + [(-6),(3)] = [(2y),(6)]`
`[(2 +0),(-3 + 2x)] + [(-6),(3)] = [(2y),(6)]`
`[(2 - 6),(-3 + 2x + 3)] = [(2y),(6)]`
⇒ `[(-4),(2x)] = [(2y),(6)]`
⇒ 2x = 6 and 2y = –4
⇒ x = `(6)/(2)` and y = `-(4)/(2)`
⇒ x = 3 and ⇒ y = –2.
APPEARS IN
संबंधित प्रश्न
Given matrix A `[(4 sin 30°, cos 0°),(cos 0°, 4 sin 30°)]` and B = `[(4),(5)]`. If AX = B.
- Write the order of matrix X.
- Find the matrix ‘X’.
if A = `[(2,3),(5,7)]`, B = `[(0,4),(-1,7)]` and c = `[(1,0),(-1, 4)]`, find AC + B2 – 10C.
If A = `[(3, 1),(-1, 2)]` and I = `[(1, 0),(0, 1)]`, find A2 – 5A + 7I.
Evaluate:
`7[(-1, 2),(0, 1)]`
Given A = `[(2, -1),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, find the matrix X such that : A + X = 2B + C.
If `A = [(2, 5),(1, 3)]`, `B = [(4, -2),(-1, 3)]` and I is Identity matrix of same order and `A^t` is the transpose of matrix A find `A^t.B + BI`
If A = `[(3, a),(-4, 8)]`, B = `[(c, 4),(-3, 0)]`, C = `[(-1, 4),(3, b)]` and 3A – 2C = 6B, find the values of a, b and c.
Find x and y if
`[( x , 3x),(y , 4y)][(2),(1)] = [(5),(12)]`.
If A = `[(3 , 1),(-1 , 2)]` and I = `[(1 , 0),(0, 1)]`
find A2 - 5A + 7 I.
Find the values of x, y, a and b, if `[(3x + 4y, 2, x - 2y),(a + b, 2a - b, -1)] = [(2, 2, 4),(5, 5, 1)]`