Advertisements
Advertisements
प्रश्न
If A = `[(3, a),(-4, 8)]`, B = `[(c, 4),(-3, 0)]`, C = `[(-1, 4),(3, b)]` and 3A – 2C = 6B, find the values of a, b and c.
उत्तर
Given: A = `[(3, a),(-4, 8)]`, B = `[(c, 4),(-3, 0)]`, C = `[(-1, 4),(3, b)]`
∴ 3A = `3[(3, a),(-4, 8)] = [(9, 3a),(-12, 24)]`
6B = `6[(c, 4),(-3, 0)] = [(6c, 24),(-18, 0)]`
2C = `2[(-1, 4),(3, b)] = [(-2, 8),(6, 2b)]`
∵ 3A – 2C = 6B
∴ `[(9, 3a),(-12, 24)] - [(-2, 8),(6, 2b)] = [(6c, 24),(-18, 0)]`
`\implies [(9 - (-2), 3a - 8),(-12 - 6, 24 - 2b)] = [(6c, 24),(-18, 0)]`
`\implies [(11, 3a - 8),(-18, 24 - 2b)] = [(6c, 24),(-18, 0)]`
Comparing the corresponding terms, we have
3a – 8 = 24
`\implies` 3a = 24 + 8
`\implies` 3a = 32
`\implies a = 32/3 = 10 2/3`
And 24 – 2b = 0
`\implies` 2b = 24
`\implies` b = `24/2` = 12
And 6c = 11
`\implies c = 11/6 = 1 5/6`
Hence a = `10 2/3`, b = 12, c = `1 5/6`
APPEARS IN
संबंधित प्रश्न
Evaluate:
`7[(-1, 2),(0, 1)]`
If A = `[(4, 2),(1,1)]`, find (A – 2I)(A – 3I).
Find the value of x, given that A2 = B,
A = `[(2, 12),(0, 1)]` and B = `[(4, x),(0, 1)]`
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find : 2A + 3B
If A = `[(1,3), (3,4)]` B = `[(-2,1), (-3,2)]` and `A^2 - 5B^2 = 5C` Find the matrix C where C is a 2 by 2 matrix.
Let A = `[(1 , 0),(2 , 1)]`, B = `[(2 , 3),(-1 , 0)]`. Find A2 + AB + B2
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.
Choose the correct answer from the given four options :
If `[(x + 2y, 3y),(4x, 2)] = [(0, -3),(8, 2)]` then the value of x – y is
Find a, b, c and d if `3[(a, b),(c, d)] = [(4, a + b),(c + d, 3)] + [(a, 6),(-1, 2d)]`
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : A2