Advertisements
Advertisements
प्रश्न
Find the values of x, y, a and b, if `[(3x + 4y, 2, x - 2y),(a + b, 2a - b, -1)] = [(2, 2, 4),(5, 5, 1)]`
उत्तर
Comparing the corresponding terms, we get.
3x + 4y = 2 ……(i)
x – 2y = 4 …….(ii)
Multiplying (i) by 1 and (ii) by 2
3x + 4y = 2,
2x – 4y = 8
Adding we get,
5x = 10
⇒ x = 2
Substituting the value of x in (i)
3 x 2 + 4y = 2,
6 + 4y = 2,
4y = 2 – 6
= –4
y = –1
∴ x = 2, y = –1
a + b = 5 ...(iii)
2a – b = –5. ...(iv)
APPEARS IN
संबंधित प्रश्न
Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.
If A and B are any two 2 × 2 matrices such that AB = BA = B and B is not a zero matrix, what can you say about the matrix A?
Solve for x and y :
`[(3,-1),(2,-1)][(-2),(4)]=[(x),(y)]`
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find A - 2B
If P = `|(2 , 9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` , find 2P + 3Q
If A =`|(1, 9 , 4),(5 , 0 , 3)|` , find negative A
If P = (8 , 5),(7 , 2) , find Pt
If A = `[(3, x),(0, 1)]` and B = `[(9, 16),(0, -y)]`, find x and y when A2 = B.
If A = `[(3 , 1),(-1 , 2)]` and I = `[(1 , 0),(0, 1)]`
find A2 - 5A + 7 I.
Find the value of x if `[(3x + y, -y),(2y - x, 3)] = [(1, 2),(-5, 3)]`