Advertisements
Advertisements
प्रश्न
Given matrix, X = `[(1, 1),(8, 3)]` and I = `[(1, 0),(0, 1)]`, prove that X2 = 4X + 5I
उत्तर
X2 = `[(1, 1),(8, 3)][(1, 1),(8, 3)]`
= `[(1 xx 1 + (1) xx (8), 1 xx (1) + (1) xx 3),((8) xx 1 + 3 xx (8),(8) xx (1) + 3 xx 3)]`
= `[(1 + 8, 1 + 3),(8 + 24, 8 + 9)]`
∴ X2 = `[(9, 4),(32, 17)]`
And 4X = `4[(1, 1),(8, 3)]`
= `[(4, 4),(32, 12)]`
4X + 5I = `[(4, 4),(32, 12)] + [(5, 0),(0, 5)]`
= `[(9, 4),(32, 17)]`
∴ X2 = 4X + 5I,
Hence proved
APPEARS IN
संबंधित प्रश्न
If P = `[(1, 2),(2, -1)]` and Q = `[(1, 0),(2, 1)]`, then compute:
- P2 – Q2
- (P + Q)(P – Q)
Is (P + Q)(P – Q) = P2 – Q2 true for matrix algebra?
If A = [4 7] and B = [3 l], find: A - B
If P = (8 , 5),(7 , 2) , find Pt
Let A = `[(2, 1),(0, -2)]`, B = `[(4, 1),(-3, -2)]` and C = `[(-3, 2),(-1, 4)]`. Find A2 + AC – 5B.
Given matrix B =`[(1,1), (8,3)]` Find the matrix X if, X = B2 - 4B. Hence, solve for a and b given X`[(a), (b)] = [(5), (50)]`
Find x and y if
`[( x , 3x),(y , 4y)][(2),(1)] = [(5),(12)]`.
Find x and y, if `((x,3x),(y, 4y))((2),(1)) = ((5),(12))`.
If A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`, find matrix X such that 3A + 5B - 2X = 0.
If A = `[(2 , -1),(-4, 5)]` and B = [0 -3] find the matrix C such that CA = B
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`