Advertisements
Advertisements
प्रश्न
If A = `[(1, 3),(3, 4)]`, B = `[(-2, 1),(-3, 2)]` and A2 – 5B2 = 5C. Find matrix C where C is a 2 by 2 matrix.
उत्तर
Given: A = `[(1, 3),(3, 4)]`, B = `[(-2, 1),(-3, 2)]` and A2 – 5B2 = 5C
Now, A2 = A × A
= `[(1, 3),(3, 4)] xx [(1, 3),(3, 4)]`
= `[(1 xx 1 + 3 xx 3, 1 xx 3 + 3 xx 4),(3 xx 1 + 4 xx 3, 3 xx 3 + 4 xx 4)]`
= `[(1 + 9, 3 + 12),(3 + 12, 9 + 16)]`
= `[(10, 15),(15, 25)]`
And B2 = B × B
= `[(-2, 1),(-3, 2)] xx [(-2, 1),(-3, 2)]`
= `[(-2 xx (-2) + 1 xx (-3), -2 xx 1 + 1 xx 2),(-3 xx (-2) + 2 xx (-3), -3 xx 1 + 2 xx 2)]`
= `[(4 - 3, -2 + 2),(6 - 6, -3 + 4)]`
= `[(1, 0),(0, 1)]`
Now, A2 – 5B2 = `[(10, 15),(15, 25)] - 5[(1, 0),(0, 1)]`
= `[(10, 15),(15, 25)] - [(5, 0),(0, 5)]`
= `[(5, 15),(15, 20)]`
= `5[(1, 3),(3, 4)]`
= 5C
Hence, C = `[(1, 3),(3, 4)]`
APPEARS IN
संबंधित प्रश्न
Given `[(2, 1),(-3,4)]` . X = `[(7),(6)]`. Write:
- the order of the matrix X.
- the matrix X.
Given A = `[(2, -1),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, find the matrix X such that : A + X = 2B + C.
Find the value of x, given that A2 = B,
A = `[(2, 12),(0, 1)]` and B = `[(4, x),(0, 1)]`
Evaluate the following :
`|(2 , -5),(0 , -3)| |(1 , -1),(3 , 2)|`
Given matrix A = `[(4sin30^@,cos0^@), (cos0^@,4sin30^@)] and B = [(4), (5)]` If AX = B.
Write the order of matrix X.
Find x and y, if
`[(-3, 2),(0, -5)] [(x),(2)] = [(-5), (y)]`
If A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`, find matrix X such that 3A + 5B - 2X = 0.
Let `"A" = [(4 , -2),(6 , -3)], "B" = [(0 , 2),(1 , -1)] and "C" = [(-2 , 3),(1 , -1)]`. Find A2 - A + BC
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.
Given matrix, X = `[(1, 1),(8, 3)]` and I = `[(1, 0),(0, 1)]`, prove that X2 = 4X + 5I