Advertisements
Advertisements
प्रश्न
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
उत्तर
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
= `sin^2 28^@ + sin^2(90^@ - 28^@) + tan^2 38^@ - cot^2 (90^@ - 38^@) + 1/4 sec^2 30^@`
= `(sin^2 28^@ + cos^2 28^@) + tan^2 38^@ - tan^2 38^@ + 1/4 xx (2/sqrt3)^2`
= `1 + 0 + 1/4 xx 4/3`
= `1 + 1/3`
= `4/3`
APPEARS IN
संबंधित प्रश्न
In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude.
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
Without using trigonometric tables, prove that:
sin53° cos37° + cos53° sin37° = 1
Without using trigonometric tables, prove that:
(sin72° + cos18°)(sin72° − cos18°) = 0
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.
A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]
Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'