मराठी

Without Using Trigonometric Tables, Prove That: Sin53° Cos37° + Cos53° Sin37° = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1

बेरीज

उत्तर

LHS = sin 53° cos 37° +cos 53° sin 37° 

= sin (90° - 37°) cos 37° + cos (90° - 37°) sin 37°

= cos 37° + cos 37° + sin 37° sin 37°

= cos2 37 + sin2 37

= 1

= RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 3.1 | पृष्ठ ३१३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate without using trigonometric tables, 

`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`


Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°


Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`


Without using trigonometric tables, evaluate :

`sec 11^circ/("cosec"  79^circ)`


Without using trigonometric tables, evaluate :

`("cosec"  42^circ)/sec 48^circ`


Without using trigonometric tables, prove that:

cosec 80° − sec 10° = 0


Without using trigonometric tables, prove that:

sin248° + sin242° = 1


Without using trigonometric tables, prove that:

(sin 65° + cos 25°)(sin 65° − cos 25°) = 0


Without using trigonometric tables, prove that:

sin35° sin55° − cos35° cos55° = 0


Without using trigonometric tables, prove that:

(sin72° + cos18°)(sin72° − cos18°) = 0


Prove that:

`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ = 2`


Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  


If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.


Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`


Prove the following:

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`


Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.


Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.


From the trigonometric table, write the values of tan 45°48'.


Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×