Advertisements
Advertisements
प्रश्न
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
उत्तर
\[\ LHS = \frac{\sec\left( 90° - \theta \right) cosec\theta - \tan\left( 90° - \theta \right) \cot\theta + \cos^2 25° + \cos^2 65°}{3\tan27° \tan63°}\]
\[ = \frac{cosec\theta cosec\theta - \cot\theta \cot\theta + \sin^2 \left( 90° - 25° \right) + \cos^2 65°}{3\tan27° \cot\left( 90° - 63° \right)}\]
\[ = \frac{{cosec}^2 \theta - \cot^2 \theta + \sin^2 65° + \cos^2 65°}{3\tan27°\cot27°}\]
\[ = \frac{1 + 1}{3 \times \tan27° \times \frac{1}{\tan27°}}\]
\[ = \frac{2}{3}\]
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`
Without using trigonometric tables, prove that:
cos275° + cos215° = 1
Without using trigonometric tables, prove that:
cos257° − sin233° = 0
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.
Solve : Sin2θ - 3sin θ + 2 = 0 .
If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`
Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.
Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.
Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.