Advertisements
Online Mock Tests
Chapters
2: Polynomials
3: Linear Equations in two variables
4: Triangles
5: Trigonometric Ratios
6: T-Ratios of some particular angles
▶ 7: Trigonometric Ratios of Complementary Angles
8: Trigonometric Identities
9: Mean, Median, Mode of Grouped Data, Cumulative Frequency Graph and Ogive
10: Quadratic Equations
11: Arithmetic Progression
12: Circles
13: Constructions
14: Height and Distance
15: Probability
16: Coordinate Geomentry
17: Perimeter and Areas of Plane Figures
18: Area of Circle, Sector and Segment
19: Volume and Surface Area of Solids
![RS Aggarwal solutions for Mathematics [English] Class 10 chapter 7 - Trigonometric Ratios of Complementary Angles RS Aggarwal solutions for Mathematics [English] Class 10 chapter 7 - Trigonometric Ratios of Complementary Angles - Shaalaa.com](/images/9789350271810-mathematics-english-class-10_6:362518cae02c41f896f78fdfb22bac39.jpg)
Advertisements
Solutions for Chapter 7: Trigonometric Ratios of Complementary Angles
Below listed, you can find solutions for Chapter 7 of CBSE RS Aggarwal for Mathematics [English] Class 10.
RS Aggarwal solutions for Mathematics [English] Class 10 7 Trigonometric Ratios of Complementary Angles Exercises [Pages 312 - 314]
Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`
Without using trigonometric tables, evaluate :
`sec 11^circ/("cosec" 79^circ)`
Without using trigonometric tables, evaluate :
`tan 27^circ/cot 63^circ`
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Without using trigonometric tables, evaluate :
`("cosec" 42^circ)/sec 48^circ`
Without using trigonometric tables, evaluate :
`cot 38^circ/tan 52^circ`
Without using trigonometric tables, prove that:
cos 81° − sin 9° = 0
Without using trigonometric tables, prove that:
tan 71° − cot 19° = 0
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
Without using trigonometric tables, prove that:
cos275° + cos215° = 1
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
Without using trigonometric tables, prove that:
sin248° + sin242° = 1
Without using trigonometric tables, prove that:
cos257° − sin233° = 0
Without using trigonometric tables, prove that:
(sin 65° + cos 25°)(sin 65° − cos 25°) = 0
Without using trigonometric tables, prove that:
sin53° cos37° + cos53° sin37° = 1
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Without using trigonometric tables, prove that:
sin35° sin55° − cos35° cos55° = 0
Without using trigonometric tables, prove that:
(sin72° + cos18°)(sin72° − cos18°) = 0
Without using trigonometric tables, prove that:
tan48° tan23° tan42° tan67° = 1
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Prove that:
`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec" 31^circ = 2`
Prove that:
`(2 "sin" 68^circ)/(cos 10^circ )- (2 cot 15^circ)/(5 tan 75^circ) = ((3 tan 45^circ t an 20^circ tan 40^circ tan 50^circ tan 70^circ)) /5= 1`
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]
Prove that:
\[\frac{\sin\theta \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Prove that:
cos1° cos2° cos3° ... cos180° = 0
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Prove that
cosec (65 °+ θ) sec (25° − θ) − tan (55° − θ) + cot (35° + θ) = 0
Prove that
sin (50° + θ ) − cos (40° − θ) + tan 1° tan 10° tan 80° tan 89° = 1.
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
If A, B and C are the angles of a ΔABC, prove that tan `((C + "A")/2) = cot B/2`
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
Solutions for 7: Trigonometric Ratios of Complementary Angles
![RS Aggarwal solutions for Mathematics [English] Class 10 chapter 7 - Trigonometric Ratios of Complementary Angles RS Aggarwal solutions for Mathematics [English] Class 10 chapter 7 - Trigonometric Ratios of Complementary Angles - Shaalaa.com](/images/9789350271810-mathematics-english-class-10_6:362518cae02c41f896f78fdfb22bac39.jpg)
RS Aggarwal solutions for Mathematics [English] Class 10 chapter 7 - Trigonometric Ratios of Complementary Angles
Shaalaa.com has the CBSE Mathematics Mathematics [English] Class 10 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RS Aggarwal solutions for Mathematics Mathematics [English] Class 10 CBSE 7 (Trigonometric Ratios of Complementary Angles) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RS Aggarwal textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 10 chapter 7 Trigonometric Ratios of Complementary Angles are Trigonometry, Trigonometric Ratios, Trigonometric Ratios of Some Special Angles, Trigonometric Ratios of Complementary Angles, Trigonometric Identities, Proof of Existence, Relationships Between the Ratios, Trigonometry, Trigonometric Ratios and Its Reciprocal, Trigonometry, Trigonometric Ratios, Trigonometric Ratios of Some Special Angles, Trigonometric Ratios of Complementary Angles, Trigonometric Identities, Proof of Existence, Relationships Between the Ratios, Trigonometry, Trigonometric Ratios and Its Reciprocal.
Using RS Aggarwal Mathematics [English] Class 10 solutions Trigonometric Ratios of Complementary Angles exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RS Aggarwal Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [English] Class 10 students prefer RS Aggarwal Textbook Solutions to score more in exams.
Get the free view of Chapter 7, Trigonometric Ratios of Complementary Angles Mathematics [English] Class 10 additional questions for Mathematics Mathematics [English] Class 10 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.