मराठी

RS Aggarwal solutions for Mathematics [English] Class 10 chapter 7 - Trigonometric Ratios of Complementary Angles [Latest edition]

Advertisements

Chapters

RS Aggarwal solutions for Mathematics [English] Class 10 chapter 7 - Trigonometric Ratios of Complementary Angles - Shaalaa.com
Advertisements

Solutions for Chapter 7: Trigonometric Ratios of Complementary Angles

Below listed, you can find solutions for Chapter 7 of CBSE RS Aggarwal for Mathematics [English] Class 10.


Exercises
Exercises [Pages 312 - 314]

RS Aggarwal solutions for Mathematics [English] Class 10 7 Trigonometric Ratios of Complementary Angles Exercises [Pages 312 - 314]

Exercises | Q 1.1 | Page 312

Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`

Exercises | Q 1.2 | Page 312

Without using trigonometric tables, evaluate :

`sec 11^circ/("cosec"  79^circ)`

Exercises | Q 1.3 | Page 312

Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`

Exercises | Q 1.4 | Page 312

Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`

Exercises | Q 1.5 | Page 312

Without using trigonometric tables, evaluate :

`("cosec"  42^circ)/sec 48^circ`

Exercises | Q 1.6 | Page 312

Without using trigonometric tables, evaluate :

`cot 38^circ/tan 52^circ`

Exercises | Q 2.1 | Page 312

Without using trigonometric tables, prove that:

cos 81° − sin 9° = 0

Exercises | Q 2.2 | Page 312

Without using trigonometric tables, prove that:

tan 71° − cot 19° = 0

Exercises | Q 2.3 | Page 312

Without using trigonometric tables, prove that:

cosec 80° − sec 10° = 0

Exercises | Q 2.4 | Page 312

Without using trigonometric tables, prove that:

cosec272° − tan218° = 1

Exercises | Q 2.5 | Page 312

Without using trigonometric tables, prove that:

cos275° + cos215° = 1

Exercises | Q 2.6 | Page 312

Without using trigonometric tables, prove that:

tan266° − cot224° = 0

Exercises | Q 2.7 | Page 312

Without using trigonometric tables, prove that:

sin248° + sin242° = 1

Exercises | Q 2.8 | Page 312

Without using trigonometric tables, prove that:

cos257° − sin233° = 0

Exercises | Q 2.9 | Page 312

Without using trigonometric tables, prove that:

(sin 65° + cos 25°)(sin 65° − cos 25°) = 0

Exercises | Q 3.1 | Page 313

Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1

Exercises | Q 3.2 | Page 313

Without using trigonometric tables, prove that:

cos54° cos36° − sin54° sin36° = 0

Exercises | Q 3.3 | Page 313

Without using trigonometric tables, prove that:

sec70° sin20° + cos20° cosec70° = 2

Exercises | Q 3.4 | Page 313

Without using trigonometric tables, prove that:

sin35° sin55° − cos35° cos55° = 0

Exercises | Q 3.5 | Page 313

Without using trigonometric tables, prove that:

(sin72° + cos18°)(sin72° − cos18°) = 0

Exercises | Q 3.6 | Page 313

Without using trigonometric tables, prove that:

tan48° tan23° tan42° tan67° = 1

Exercises | Q 4.1 | Page 313

Prove that:

`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2  cos 70^circ "cosec"  20^circ = 0`

Exercises | Q 4.2 | Page 313

Prove that:

`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ = 2`

Exercises | Q 4.3 | Page 313

Prove that:

`(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5 tan 75^circ) = ((3  tan 45^circ t  an 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5= 1` 

Exercises | Q 4.4 | Page 313

Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `

Exercises | Q 5.1 | Page 313

Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1

Exercises | Q 5.2 | Page 313

Prove that:

\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]

Exercises | Q 5.3 | Page 313

Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]

Exercises | Q 5.4 | Page 313

Prove that:

\[\frac{sin\theta  \cos(90°  - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]

Exercises | Q 5.5 | Page 313

Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]

Exercises | Q 5.6 | Page 313

Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]

Exercises | Q 5.7 | Page 313

Prove that:

\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]

Exercises | Q 6.1 | Page 313

Prove that :

tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]

Exercises | Q 6.2 | Page 313

Prove that:

cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]

Exercises | Q 6.3 | Page 313

Prove that:

cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]

Exercises | Q 6.4 | Page 313

Prove that:

cos1° cos2° cos3° ... cos180° = 0

Exercises | Q 6.5 | Page 313

Prove that:

\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]

Exercises | Q 7.1 | Page 314

Prove that

sin (70° + θ) − cos (20° − θ) = 0

Exercises | Q 7.2 | Page 314

Prove that

tan (55° − θ) − cot (35° + θ) = 0

Exercises | Q 7.3 | Page 314

Prove that

cosec (67° + θ) − sec (23° − θ) = 0

Exercises | Q 7.4 | Page 314

Prove that

 cosec (65 °+ θ)  sec  (25° −  θ) − tan (55° − θ) + cot (35° + θ) = 0

Exercises | Q 7.5 | Page 314

Prove that

sin (50° + θ ) − cos (40° − θ) + tan 1° tan 10° tan 80° tan 89° = 1.

Exercises | Q 8.1 | Page 314

Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 

Exercises | Q 8.2 | Page 314

Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cot65° + tan49°

Exercises | Q 8.3 | Page 814

Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°

Exercises | Q 8.4 | Page 314

Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°

Exercises | Q 9 | Page 314

If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`

Exercises | Q 10 | Page 7

If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ

Exercises | Q 11 | Page 314

If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  

Exercises | Q 12 | Page 314

If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.

Exercises | Q 13 | Page 314

If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.

Exercises | Q 14 | Page 314

If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.

Exercises | Q 15 | Page 314
\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

Solutions for 7: Trigonometric Ratios of Complementary Angles

Exercises
RS Aggarwal solutions for Mathematics [English] Class 10 chapter 7 - Trigonometric Ratios of Complementary Angles - Shaalaa.com

RS Aggarwal solutions for Mathematics [English] Class 10 chapter 7 - Trigonometric Ratios of Complementary Angles

Shaalaa.com has the CBSE Mathematics Mathematics [English] Class 10 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RS Aggarwal solutions for Mathematics Mathematics [English] Class 10 CBSE 7 (Trigonometric Ratios of Complementary Angles) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RS Aggarwal textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 10 chapter 7 Trigonometric Ratios of Complementary Angles are Trigonometry, Trigonometric Ratios, Trigonometric Ratios of Some Special Angles, Trigonometric Ratios of Complementary Angles, Trigonometric Identities, Proof of Existence, Relationships Between the Ratios, Trigonometry, Trigonometric Ratios and Its Reciprocal, Trigonometry, Trigonometric Ratios, Trigonometric Ratios of Some Special Angles, Trigonometric Ratios of Complementary Angles, Trigonometric Identities, Proof of Existence, Relationships Between the Ratios, Trigonometry, Trigonometric Ratios and Its Reciprocal.

Using RS Aggarwal Mathematics [English] Class 10 solutions Trigonometric Ratios of Complementary Angles exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RS Aggarwal Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [English] Class 10 students prefer RS Aggarwal Textbook Solutions to score more in exams.

Get the free view of Chapter 7, Trigonometric Ratios of Complementary Angles Mathematics [English] Class 10 additional questions for Mathematics Mathematics [English] Class 10 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×