मराठी

Prove That: Cos1° Cos2° Cos3° ... Cos180° = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

cos1° cos2° cos3° ... cos180° = 0

बेरीज

उत्तर

LHS \[ = \cos1^\circ \cos2^\circ \cos3^\circ . . . \cos180^\circ \]

\[ = \cos1^\circ \times \cos2^\circ \times \cos3^\circ \times . . . \times \cos90^\circ \times . . . \cos180^\circ \]

\[ = \cos1^\circ \times \cos2^\circ \times \cos3^\circ \times . . . \times 0 \times . . . \cos180^\circ \]

= 0

= RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 6.4 | पृष्ठ ३१३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`


Without using trigonometric tables, prove that:

sin248° + sin242° = 1


Without using trigonometric tables, prove that:

cos257° − sin233° = 0


Without using trigonometric tables, prove that:

(sin72° + cos18°)(sin72° − cos18°) = 0


Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  


If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.


\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`


Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.


Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).


From trigonometric table, write the values of sin 37°19'.


Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'


Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'


`(sin 40° + cos 50°)/(tan 38°20')`


The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.


Given that sin θ = `a/b` then cos θ is equal to ______.


Prove that:

`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×