मराठी

The Length of a Shadow of a Tower Standing on a Level Plane is Found to Be 2y Meters Longer When the Seen'S Altitude is 30° than When It Was5° Prove that the Height of the Tower is Y ( √3 + 1 ) Meter. - Mathematics

Advertisements
Advertisements

प्रश्न

The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.

बेरीज

उत्तर

In the right-angled triangle BCD.

tan 45° = `h/(BC)`

h = BC          ....(1)

In right-angled Δ ACD,

tan 30°  = `h/(2y + BC)`

⇒ `1/sqrt3 = h/(2y + h)`

⇒ `h(sqrt3 - 1) = 2y`

⇒ h = y ( √3 + 1 ) m
Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Trigonometry - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 18 Trigonometry
Exercise 2 | Q 32

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×