Advertisements
Advertisements
प्रश्न
Without using trigonometric tables, evaluate :
`cot 38^circ/tan 52^circ`
उत्तर
`cot 38^circ/tan 52^circ`
= `cot (90^circ - 52^circ)/tan 52^circ`
= `tan 52^circ/tan 52^circ` [`because` tan (90-θ) = cot θ]
= 1
APPEARS IN
संबंधित प्रश्न
Without using trigonometrical tables, evaluate:
`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`
Without using trigonometric tables, prove that:
cos 81° − sin 9° = 0
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
Without using trigonometric tables, prove that:
cos275° + cos215° = 1
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Prove that:
`(2 "sin" 68^circ)/(cos 10^circ )- (2 cot 15^circ)/(5 tan 75^circ) = ((3 tan 45^circ t an 20^circ tan 40^circ tan 50^circ tan 70^circ)) /5= 1`
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Prove that:
\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
Prove the following:
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`
Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.
From trigonometric table, write the values of sin 37°19'.
From the trigonometric table, write the values of cos 23°17'.
From the trigonometric table, write the values of tan 45°48'.
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
`(sin 40° + cos 50°)/(tan 38°20')`
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`