मराठी

Prove That: Sin 18 ∘ Cos 72 ∘ + √ 3 ( Tan 10 ∘ Tan 30 ∘ Tan 40 ∘ Tan 50 ∘ Tan 80 ∘ ) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `

बेरीज

उत्तर

`"LHS" =  sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `

`=(sin 18^circ)/sin(90^circ -72^circ) + sqrt(3)   [cot(90^circ - 10^circ)xx1/sqrt(3)xxcot(90^circ - 40^circ )xxtan50^circ]` 

`=(sin 18^circ)/(sin 18^circ) + sqrt(3) (cot 80^circxxcot 50^circ)xxtan 50^circxxtan 80^circ)/)`

`= 1 + (1/tan 80^circxx1/ tan 50^circxxtan 50^circxxtan 80^circ)`

= 2

= RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 4.4 | पृष्ठ ३१३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`


Without using trigonometric tables, prove that:

cos 81° − sin 9° = 0


Without using trigonometric tables, prove that:

sin35° sin55° − cos35° cos55° = 0


Without using trigonometric tables, prove that:

(sin72° + cos18°)(sin72° − cos18°) = 0


Without using trigonometric tables, prove that:

tan48° tan23° tan42° tan67° = 1


Prove that:

`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2  cos 70^circ "cosec"  20^circ = 0`


Prove that:

`(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5 tan 75^circ) = ((3  tan 45^circ t  an 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5= 1` 


Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]


Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]


Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


Prove that:

\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]


Prove that:

cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]


Prove the following:

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`


Solve : Sin2θ - 3sin θ + 2 = 0 .


Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'


The maximum value of `1/(cosec alpha)` is ______.


Prove that:

`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A


Prove that:

`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×