English

Prove That: Sin 18 ∘ Cos 72 ∘ + √ 3 ( Tan 10 ∘ Tan 30 ∘ Tan 40 ∘ Tan 50 ∘ Tan 80 ∘ ) - Mathematics

Advertisements
Advertisements

Question

Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `

Sum

Solution

`"LHS" =  sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `

`=(sin 18^circ)/sin(90^circ -72^circ) + sqrt(3)   [cot(90^circ - 10^circ)xx1/sqrt(3)xxcot(90^circ - 40^circ )xxtan50^circ]` 

`=(sin 18^circ)/(sin 18^circ) + sqrt(3) (cot 80^circxxcot 50^circ)xxtan 50^circxxtan 80^circ)/)`

`= 1 + (1/tan 80^circxx1/ tan 50^circxxtan 50^circxxtan 80^circ)`

= 2

= RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Trigonometric Ratios of Complementary Angles - Exercises [Page 313]

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 4.4 | Page 313

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Without using trigonometric tables, evaluate :

`sec 11^circ/("cosec"  79^circ)`


Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`


Without using trigonometric tables, prove that:

cosec 80° − sec 10° = 0


Without using trigonometric tables, prove that:

tan266° − cot224° = 0


Without using trigonometric tables, prove that:

(sin 65° + cos 25°)(sin 65° − cos 25°) = 0


Prove that:

`(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5 tan 75^circ) = ((3  tan 45^circ t  an 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5= 1` 


Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


Prove that:

\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]


Prove that:

cos1° cos2° cos3° ... cos180° = 0


If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  


Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`


A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]


Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.


Solve : Sin2θ - 3sin θ + 2 = 0 .


Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.


`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`


The maximum value of `1/(cosec alpha)` is ______.


Prove that:

`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×