Advertisements
Advertisements
Question
Solve : Sin2θ - 3sin θ + 2 = 0 .
Solution
sin2θ - 3sin θ + 2 = 0
⇒ sin2θ - 2sin θ - sin θ + 2 = 0
⇒ sin θ (sin θ - 2) - 1(sin θ - 2) = 0
⇒ (sin θ - 2)(sin θ - 1) = 0
⇒ sin θ - 2 = 0
⇒ sin θ = 2
sin θ = 2 has no solution for angle θ, as there is no any angle whose sin θ is equal to 2.
⇒ sin θ - 1 = 0
⇒ sin θ = 1
⇒ θ = 90°
APPEARS IN
RELATED QUESTIONS
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Without using trigonometric tables, prove that:
(sin72° + cos18°)(sin72° − cos18°) = 0
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]
Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`
Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.
Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'
Prove that:
`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`