English

Solve the Following Equation: (Cos^2θ - 3 Cosθ + 2)/Sin^2θ = 1. - Mathematics

Advertisements
Advertisements

Question

Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.

Sum

Solution

We have,
`(cos^2 θ - 3cos θ + 2)/(sin^2 θ) = 1`

⇒ cos2 θ - 3cos θ + 2 = sin2 θ
⇒ cos2 θ - 3cos θ + 2 - sin2 θ = 0
⇒ cos2 θ - 3cos θ + 1 + cos2 θ = 0
⇒ 2cos2 θ - 3cos θ + 1 = 0
⇒ 2cos2 θ - 2cos θ - cos θ + 1 = 0
⇒ 2cos θ( cos θ - 1) - 1( cos θ - 1) = 0
⇒ (cos θ - 1)(2cos θ - 1) = 0
⇒ cos θ - 1 = 0 or  ⇒ 2cos θ - 1 = 0
⇒  cos θ = 1     or  ⇒ cos θ = `1/2`

⇒ θ = 0°            0r  ⇒ θ = 60°
Since, 0 < θ < 90°
So, θ = 60° is the solution of the equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 1

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 1 | Q 11.2

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×