Advertisements
Advertisements
Question
Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.
Solution
We have,
`(cos^2 θ - 3cos θ + 2)/(sin^2 θ) = 1`
⇒ cos2 θ - 3cos θ + 2 = sin2 θ
⇒ cos2 θ - 3cos θ + 2 - sin2 θ = 0
⇒ cos2 θ - 3cos θ + 1 + cos2 θ = 0
⇒ 2cos2 θ - 3cos θ + 1 = 0
⇒ 2cos2 θ - 2cos θ - cos θ + 1 = 0
⇒ 2cos θ( cos θ - 1) - 1( cos θ - 1) = 0
⇒ (cos θ - 1)(2cos θ - 1) = 0
⇒ cos θ - 1 = 0 or ⇒ 2cos θ - 1 = 0
⇒ cos θ = 1 or ⇒ cos θ = `1/2`
⇒ θ = 0° 0r ⇒ θ = 60°
Since, 0 < θ < 90°
So, θ = 60° is the solution of the equation.
APPEARS IN
RELATED QUESTIONS
Without using trigonometrical tables, evaluate:
`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
Without using trigonometric tables, prove that:
sin53° cos37° + cos53° sin37° = 1
Without using trigonometric tables, prove that:
(sin72° + cos18°)(sin72° − cos18°) = 0
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove the following:
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
The maximum value of `1/(cosec alpha)` is ______.