Advertisements
Advertisements
Question
Prove the following:
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`
Solution
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta)`
` = 1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+1/(cos^2theta)) + 1/(1+1/(sin^2theta)) ..........(∵ costheta = 1/sectheta "and" sintheta = 1/(cosectheta))`
`=1/(1+sin^2theta) + 1/(1+cos^2theta) + cos^2 theta/(1+cos^2theta) + sin^2theta/(1+sin^2theta)`
Taking L. C. M
`= ((1+ cos^2theta) + (1+ sin^2theta) + (1 +sin^2theta)(cos^2theta) + (sin^2theta) (1+ cos^2theta))/((1+sin^2theta) (1+cos^2theta))`
`= (1+ cos^2theta +1 + sin^2theta + cos^2theta + sin^2theta cos^2theta +sin^2theta + sin^2thetacos^2theta)/((1+sin^2theta) (1+cos^2theta)) ..(∵ sin^2theta + cos^2theta = 1)`
`= (4+2sin^2thetacos^2theta)/(1+ sin^2theta + cos^2theta + sin^2thetacos^2theta)`
` = (4+2 sin^2thetacos^2theta)/(2+sin^2thetacos^2theta)`
Taking 2 as common factor
`= (2(2+ sin^2thetacos^2theta))/(2+sin^2thetacos^2theta) = 2.`
R. H. S
Hence, proved
APPEARS IN
RELATED QUESTIONS
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Without using trigonometric tables, evaluate :
`sec 11^circ/("cosec" 79^circ)`
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Without using trigonometric tables, evaluate :
`("cosec" 42^circ)/sec 48^circ`
Without using trigonometric tables, evaluate :
`cot 38^circ/tan 52^circ`
Without using trigonometric tables, prove that:
tan48° tan23° tan42° tan67° = 1
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Prove that:
\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
`(sin 40° + cos 50°)/(tan 38°20')`
Given that sin θ = `a/b` then cos θ is equal to ______.
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.