English

Prove the following: 1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2 - Mathematics

Advertisements
Advertisements

Question

Prove the following:

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`

Sum

Solution

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta)`

` = 1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+1/(cos^2theta)) + 1/(1+1/(sin^2theta))  ..........(∵ costheta = 1/sectheta "and"  sintheta = 1/(cosectheta))` 

`=1/(1+sin^2theta) + 1/(1+cos^2theta) + cos^2 theta/(1+cos^2theta) + sin^2theta/(1+sin^2theta)` 

Taking L. C. M

`= ((1+ cos^2theta) + (1+ sin^2theta) + (1 +sin^2theta)(cos^2theta) + (sin^2theta) (1+ cos^2theta))/((1+sin^2theta) (1+cos^2theta))`

`= (1+ cos^2theta +1 + sin^2theta + cos^2theta + sin^2theta cos^2theta +sin^2theta + sin^2thetacos^2theta)/((1+sin^2theta) (1+cos^2theta)) ..(∵ sin^2theta + cos^2theta = 1)`

`= (4+2sin^2thetacos^2theta)/(1+ sin^2theta + cos^2theta + sin^2thetacos^2theta)`

` = (4+2 sin^2thetacos^2theta)/(2+sin^2thetacos^2theta)`

Taking 2 as common factor

`= (2(2+ sin^2thetacos^2theta))/(2+sin^2thetacos^2theta) = 2.`

R. H. S
Hence, proved

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) All India (Set 2)

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Evaluate without using trigonometric tables, 

`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`


Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°


Without using trigonometric tables, evaluate :

`sec 11^circ/("cosec"  79^circ)`


Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`


Without using trigonometric tables, evaluate :

`("cosec"  42^circ)/sec 48^circ`


Without using trigonometric tables, evaluate :

`cot 38^circ/tan 52^circ`


Without using trigonometric tables, prove that:

tan48° tan23° tan42° tan67° = 1


Prove that:

`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2  cos 70^circ "cosec"  20^circ = 0`


Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `


Prove that:

\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]


Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]


If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  


If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.


If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.


\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'


`(sin 40° + cos 50°)/(tan 38°20')`


Given that sin θ = `a/b` then cos θ is equal to ______.


If sin θ = 1, then the value of `1/2  sin(theta/2)`is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×