English

If Tan 2 a = Cot (A − 12°), Where 2 a is an Acute Angle, Find the Value of A. - Mathematics

Advertisements
Advertisements

Question

If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.

Sum

Solution

\[\begin{array}{l}sin3A = \cos(A - {26}^\circ ) \\ \end{array}\]
\[\begin{array}{l}\Rightarrow cos( {90}^\circ - 3A) = \cos(A - {26}^\circ )[ \because \sin\theta = \cos( {90}^\circ- \theta)] \\ \end{array}\]
\[\begin{array}{l}\Rightarrow {90}^\circ- 3A = A - {26}^\circ \\ \end{array}\]
\[\begin{array}{l}\Rightarrow {116}^\circ = 4A \\ \end{array}\]
\[ \Rightarrow A = \frac{{116}^\circ}{4} = {29}^\circ \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Trigonometric Ratios of Complementary Angles - Exercises [Page 314]

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 13 | Page 314

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°


Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`


Without using trigonometric tables, evaluate :

`sec 11^circ/("cosec"  79^circ)`


Without using trigonometric tables, evaluate :

`("cosec"  42^circ)/sec 48^circ`


Prove that:

`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ = 2`


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


Prove that:

\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]


Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.


\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).


From the trigonometric table, write the values of cos 23°17'.


From the trigonometric table, write the values of tan 45°48'.


Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.


Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.


Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'


`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`


Prove that:

`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A


Prove that:

`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`


If sin θ = 1, then the value of `1/2  sin(theta/2)`is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×