Advertisements
Advertisements
Question
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.
Solution
\[\begin{array}{l}sin3A = \cos(A - {26}^\circ ) \\ \end{array}\]
\[\begin{array}{l}\Rightarrow cos( {90}^\circ - 3A) = \cos(A - {26}^\circ )[ \because \sin\theta = \cos( {90}^\circ- \theta)] \\ \end{array}\]
\[\begin{array}{l}\Rightarrow {90}^\circ- 3A = A - {26}^\circ \\ \end{array}\]
\[\begin{array}{l}\Rightarrow {116}^\circ = 4A \\ \end{array}\]
\[ \Rightarrow A = \frac{{116}^\circ}{4} = {29}^\circ \]
APPEARS IN
RELATED QUESTIONS
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`
Without using trigonometric tables, evaluate :
`sec 11^circ/("cosec" 79^circ)`
Without using trigonometric tables, evaluate :
`("cosec" 42^circ)/sec 48^circ`
Prove that:
`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec" 31^circ = 2`
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
From the trigonometric table, write the values of cos 23°17'.
From the trigonometric table, write the values of tan 45°48'.
Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.
Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
Prove that:
`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A
Prove that:
`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.