Advertisements
Advertisements
Question
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
Solution
\[\begin{array}{l}sin3A = \cos(A =- {26}^\circ ) \\ \end{array}\]
\[\begin{array}{l}\Rightarrow cos( {90}^\circ - 3A) = \cos(A-{26}^\circ )[ \because \sin\theta = \cos( {90}^\circ - \theta)] \\ \end{array}\]
\[\begin{array}{l}\Rightarrow {90}^\circ - 3A = A - {26}^\circ \\ \end{array}\]
\[\begin{array}{l}\Rightarrow {116}^\circ = 4A \\ \end{array}\]
\[ \Rightarrow A = \frac{{116}^\circ}{4} = {29}^\circ \]
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate
`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)`
[Hint: Simplify LHS and RHS separately.]
Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`
Without using trigonometric tables, evaluate :
`tan 27^circ/cot 63^circ`
Without using trigonometric tables, prove that:
cos275° + cos215° = 1
Without using trigonometric tables, prove that:
tan48° tan23° tan42° tan67° = 1
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Prove that:
`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec" 31^circ = 2`
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
Solve : Sin2θ - 3sin θ + 2 = 0 .
If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`
Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.
The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.