English

If Sin 3 a = Cos (A − 26°), Where 3 a is an Acute Angle, Find the Value of A. - Mathematics

Advertisements
Advertisements

Question

If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.

Sum

Solution

\[\begin{array}{l}sin3A = \cos(A =- {26}^\circ ) \\ \end{array}\]
\[\begin{array}{l}\Rightarrow cos( {90}^\circ - 3A) = \cos(A-{26}^\circ )[ \because \sin\theta = \cos( {90}^\circ - \theta)] \\ \end{array}\]
\[\begin{array}{l}\Rightarrow {90}^\circ - 3A = A - {26}^\circ \\ \end{array}\]
\[\begin{array}{l}\Rightarrow {116}^\circ = 4A \\ \end{array}\]
\[ \Rightarrow A = \frac{{116}^\circ}{4} = {29}^\circ \] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Trigonometric Ratios of Complementary Angles - Exercises [Page 314]

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 12 | Page 314

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Without using trigonometric tables, evaluate 

`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`


Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`


Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`


Without using trigonometric tables, prove that:

cos275° + cos215° = 1


Without using trigonometric tables, prove that:

tan48° tan23° tan42° tan67° = 1


Prove that:

`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2  cos 70^circ "cosec"  20^circ = 0`


Prove that:

`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ = 2`


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


Prove that:

cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]


\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).


Solve : Sin2θ - 3sin θ + 2 = 0 .


If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`


Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.


The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.


If sin θ = 1, then the value of `1/2  sin(theta/2)`is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×