Advertisements
Advertisements
Question
Without using trigonometric tables, evaluate
`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`
Solution
`sin^2 34^@ + sin^2 56^@ + 2 tan 18^@ tan 72^@ - cot^2 30^@`:
`= sin^2 34^2 + sin^2 (90^@ - 34^@) + 2 tan 18^@ tan (90^@ - 18^@) - cot^2 30^@`
`= sin^2 34^@ + cos^2 34^@ + 2tan 18^@ cot 18^@ - cot^2 30^@`
`= (sin^2 34^@ + cos^2 34^@) + 2 tan 18^@ xx 1/(tan 18^@) - cot^2 30^@`
`= 1 + 2 xx 1 - (sqrt3)^2`
= 1 + 2 - 3
= 3 - 3
= 0
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
Prove that:
\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.
From the trigonometric table, write the values of cos 23°17'.
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
Prove that:
`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`