Advertisements
Advertisements
प्रश्न
Without using trigonometric tables, evaluate
`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`
उत्तर
`sin^2 34^@ + sin^2 56^@ + 2 tan 18^@ tan 72^@ - cot^2 30^@`:
`= sin^2 34^2 + sin^2 (90^@ - 34^@) + 2 tan 18^@ tan (90^@ - 18^@) - cot^2 30^@`
`= sin^2 34^@ + cos^2 34^@ + 2tan 18^@ cot 18^@ - cot^2 30^@`
`= (sin^2 34^@ + cos^2 34^@) + 2 tan 18^@ xx 1/(tan 18^@) - cot^2 30^@`
`= 1 + 2 xx 1 - (sqrt3)^2`
= 1 + 2 - 3
= 3 - 3
= 0
APPEARS IN
संबंधित प्रश्न
Without using trigonometrical tables, evaluate:
`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
Without using trigonometric tables, evaluate :
`sec 11^circ/("cosec" 79^circ)`
Without using trigonometric tables, evaluate :
`cot 38^circ/tan 52^circ`
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
Without using trigonometric tables, prove that:
sin248° + sin242° = 1
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
If A, B and C are the angles of a ΔABC, prove that tan `((C + "A")/2) = cot B/2`
From the trigonometric table, write the values of tan 45°48'.
`(sin 40° + cos 50°)/(tan 38°20')`