हिंदी

Prove That: Cos ( 90 ∘ − θ ) 1 + Sin ( 90 ∘ − θ ) + 1 + Sin ( 90 ∘ − θ ) Cos ( 90 ∘ − θ ) = 2 C O S E C θ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]

योग

उत्तर

\[\begin{array}{l}(v) LHS = \frac{\cos( {90}^0 -  \theta)}{1 + \sin( {90}^0 - \theta)} + \frac{1 + \sin( {90}^0 - \theta)}{\cos( {90}^0 - \theta)} \\ \end{array}\]

\[\begin{array}{l}= \frac{\sin\theta}{1 + \cos\theta} + \frac{1 + \cos\theta}{\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= \frac{\sin^2 \theta + {(1 + \cos\theta)}^2}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= \frac{\sin^2 \theta + 1 + \cos^2 \theta + 2\cos\theta}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= \frac{1 + 1 + 2\cos\theta}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= \frac{2 + 2\cos\theta}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= \frac{2(1 + \cos\theta)}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= 2\frac{1}{\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= 2 \ cosec\theta \\ \end{array}\]
\[\begin{array}{l}= RHS \\ \end{array}\]

= Hence proved

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 5.5 | पृष्ठ ३१३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`


Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`


Without using trigonometric tables, prove that:

sin248° + sin242° = 1


Without using trigonometric tables, prove that:

sin35° sin55° − cos35° cos55° = 0


Without using trigonometric tables, prove that:

tan48° tan23° tan42° tan67° = 1


Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]


Prove that:

\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]


If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.


If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.


\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]


Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.


Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).


Solve : Sin2θ - 3sin θ + 2 = 0 .


`(sin 40° + cos 50°)/(tan 38°20')`


The maximum value of `1/(cosec alpha)` is ______.


Prove that:

`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A


Prove that:

`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×