हिंदी

If Tan 2 a = Cot (A − 12°), Where 2 a is an Acute Angle, Find the Value of A. - Mathematics

Advertisements
Advertisements

प्रश्न

If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.

योग

उत्तर

\[\begin{array}{l}sin3A = \cos(A - {26}^\circ ) \\ \end{array}\]
\[\begin{array}{l}\Rightarrow cos( {90}^\circ - 3A) = \cos(A - {26}^\circ )[ \because \sin\theta = \cos( {90}^\circ- \theta)] \\ \end{array}\]
\[\begin{array}{l}\Rightarrow {90}^\circ- 3A = A - {26}^\circ \\ \end{array}\]
\[\begin{array}{l}\Rightarrow {116}^\circ = 4A \\ \end{array}\]
\[ \Rightarrow A = \frac{{116}^\circ}{4} = {29}^\circ \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१४]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 13 | पृष्ठ ३१४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude. 


Without using trigonometric tables, evaluate 

`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`


Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`


Without using trigonometric tables, prove that:

tan266° − cot224° = 0


Without using trigonometric tables, prove that:

(sin 65° + cos 25°)(sin 65° − cos 25°) = 0


Without using trigonometric tables, prove that:

sin35° sin55° − cos35° cos55° = 0


Without using trigonometric tables, prove that:

(sin72° + cos18°)(sin72° − cos18°) = 0


Prove that:

`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ = 2`


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


Prove that:

\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]


Prove that:

cos1° cos2° cos3° ... cos180° = 0


If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.


Prove the following:

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`


Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.


Solve : Sin2θ - 3sin θ + 2 = 0 .


Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.


`(sin 40° + cos 50°)/(tan 38°20')`


The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×