Advertisements
Advertisements
प्रश्न
Prove that:
`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec" 31^circ = 2`
उत्तर
`"LHS" = cos 80^circ/(sin 10^circ) + cos 59^circ "cosec" 31^circ `
`= (cos 80^circ)/cos(90^circ-10^circ) + sin (90^circ - 59^circ) "cosec" 31^circ`
`= 1 + "sin"31^circ`xx1/sin 31
= 1 + 1
= 2
= RHS
APPEARS IN
संबंधित प्रश्न
In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude.
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`
Without using trigonometric tables, evaluate :
`sec 11^circ/("cosec" 79^circ)`
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Prove that:
`(2 "sin" 68^circ)/(cos 10^circ )- (2 cot 15^circ)/(5 tan 75^circ) = ((3 tan 45^circ t an 20^circ tan 40^circ tan 50^circ tan 70^circ)) /5= 1`
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`
If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`
From the trigonometric table, write the values of cos 23°17'.
Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.
Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`